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Abstract

Excess comovements of the prices of commodities as studied in the early 1990s
by Pindyck and Rotenberg have been observed more accurately in the last decade
while a sharp increase in the popularity of commodity investing was also evidenced.
In this paper, we first attest these excessive comovements have been exacerbated in
the United States as compared to two selected emerging countries. To understand
these distinguishing trends, we build a simple framework of financial assets comove-
ments which introduces the covariances of commodities returns with a commodity
index return as a key factor in tying up commodities prices.
This intuition is confirmed empirically, covariances with the index risk premium en-
ter significantly as predictors of commodity specific risk premium. Further, returns
on the non-indexed commodities are shown to be less responsive to covariances’
changes as predicted by the model.
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1 Introduction and Literature Review

The singularity of commodities markets lie in the environmental risk associated
with production. Futures were introduced in the mid-19th century to cope with
this systemic risk and provide insurance to producers and consumers of commodi-
ties. Some evidence suggest they have helped producers to take more broad-based
decision on production, storage and marketing of products whether they were agri-
cultural or energy-related. 1

The benefice of futures commodities was twofold. Their growth has fuelled a steady
development of agriculture infrastructure, which include storages, vaults, transport
and logistics associated with the expansion of commodity markets. Further, com-
modities markets being characterized by high volatility of returns, some studies (for
instance Jacks (2007)) have evidenced that the introduction of futures contracts
could account for reducing volatilities. This latter point being also consequential
of the expansion of commodities markets fuelled by commodities futures.

Historically, futures commodities contracts were proeminently exchanged by
commercial or institutional commodities producers or consumers, most participants
were “hedgers” who traded futures to maximize the value of their assets, and to
reduce the risk of financial losses from price changes. However, for the last decade
new participants referred as “speculators” have entered those market in an attempt
to profit from price changes in futures contracts.

Financialization of Commodities

The literature suggests that before 2000s, commodity markets were partly seg-
mented from outside financial markets. Erb and Harvey (2006) had shown that
commodities had only low positive returns correlations with each other, while Gor-
ton and Rouwenhorst (2004) demonstrated that commodity returns had negligible
correlations with the SP500 returns. However, the combination of various factors
made commodities gradually appear as a new asset class.

A growing body of literature has acknowledged the increase in the amounts of
transactions on commodities markets(Domanski and Heath (2007),Mayer (2012),Mayer
(2009)). According to BIS statistics,Domanski and Heath (2007) report a 14 fold
increase in the notional value of OTC commodity derivatives contracts outstand-
ing between 1998 and mid-2006. In 2009, Tang and Xiong (2010) reported that
the number of futures and options contracts outstanding in commodity exchanges
worldwide had rose more than threefold between 2002 and 2008; while they re-
ported a 14-fold increase in the notional value to 13 trillion$ (BIS).

1A commodity futures contract is an agreement to buy or sell a particular commodity at a future
date, the price and the amount of the commodity are fixed at the time of the agreement. Most contracts
contemplate that the agreement will be fulfilled by actual delivery of the commodity but most are
liquidated before the delivery date. A commodity futures option gives the purchaser the right to buy or
sell a particular futures contract at a future date for a particular price.



Figure 1: A strong and sustained increase in spread positions.

According Alquist and Kilian (2010) spread positions is a natural measure of the relative
importance of speculative activities. A spread is the purchase of a future contract regarding

one delivery month, against the sale for another delivery month.

Generally large increases in open interests positions; and spread positions have been
observed.

This process has coincided with a surge in prices comparable with the ones of
the 70s; while inflation was by no mean comparable. This rise in prices preceded
a sharp decline in the aftermath of the 2008 crisis, but the increasing trend has
bounced back and has continued for most raw materials since then. Particularly
noticeable was that this rise in prices was accompanied by a rise in volatilities of



prices and comovement between commodities prices.

Excess comovements

Evolution and comovement of the prices of commodities may be determined by
theirs relationship to the exchange rate and interest rate; many studies account
for these relationships from Frankel (1986) to Akram (2008). The latter, using a
VARs analysis discusses on what extent low real interest rates and the decline of
the dollar can account for high commodity prices and whether commodity prices
tend to display overshooting behavior in response to interest rate changes. His work
consider the period ranging from 1990 to 2007. The former built a model in the
same vein of Dornbush to account for the overshooting behaviors of commodities
prices. Excessive behaviors when studying commodities seem the norm.

Highly volatile series, commodities also exhibit comovements. The puzzling
phenomenon of comovement in prices of commodities is not new, Pindyck and
Rotemberg (1988) already in 1990 accounted for “excess comovement” in the sense
that it is in excess of anything that could be explained by common effects of macro-
economic shocks such as inflation; or changes in aggregate demand, interest rates
and exchanges rates.
Recently, LePen and Sévi (2013) have used a FAVAR approach to study commodi-
ties prices comovement. They gather 187 macro-economic variables which represent
the main forces driving commodity prices. They are used to filter out the returns of
a set of seemlingly unrelated 2commodities. The residual correlation once account-
ing for these set of control variables is examined to investigate the issue of excess
comovement.
They first regress commodity returns on these factors, and acknowledge the impor-
tant role played by emerging countries in shaping commodity prices in recent years.
Further, they show that measure of hedging and speculative pressure are able to
explain a very significant part (around 60%) of their estimated time-varying excess
comovements.

Increasing linkage with stocks markets

Different approaches have been used to account for these observations: Creti et al.
(2012) use the Dynamic Conditional Correlation (thereafter DCC) introduced by
Engle to observe time-varying correlations between stocks and 25 different com-
modities. They acknowledge speculation phenomenon for oil, coffee, and cocoa. 3

They evidenced a tendency of rising correlations witht stocks for many raw materi-
als. Both markets move upward in period of growing world demand for commodi-
ties, and as presented below and evidenced in our subsequent model, commodities
as an asset class may offer new perspectives of investment when stocks markets get
bearish.

2In the sense given by Pindyck: their prices are unrelated meaning that their supply and demand
cross-elasticities are almost null

3They use the term speculation for simplifying purposes to refer to a situation in which investors
(i) engage in transactions to profit from short-term fluctuations in the market value of the considered
asset or product, and (ii) focus only on price movements rather than on the fundamentals linked to the
considered asset or product.



Our focus in this paper is on the impact of institutional investors (who follow
index investment strategies) on this rising trend in prices; and on the increase
volatilities and comovements within this asset class and with other financial assets
as evidenced by Creti et al. (2012). We will therefore first briefly present why news
investors have entered the commodities futures market and how they may have
affected prices, their volatilities and their comovements.

Investors motives

“The history of food took an ominous turn in 1991...the year Goldman Sachs
decided our daily bread might make an excellent investment”
Frederick Kaufman, The Food Bubble: How Wall Street Starved Millions & Got
Away with it, Harpers Magazine, July 2010.

Investment in commodities has been perceived by financial investors as a way
to diversify their portfolio and hedge against inflation. In the early 2000,Gorton
and Rouwenhorst (2004) provide evidence that historically commodity prices have
had a relatively low correlation with prices in other asset classes and a high corre-
lation with inflation; further they show that the return on a diversified basket of
long commodity futures has been comparable with the return on other asset classes
with similar risk features, such as equities. Since then, institutional investors have
promoted investment in commodities futures as an effective way to reduce portfolio
risk.
Further, in periods of financial and economic distress, market conditions are often
favorable to increasing commodity prices, making investment in commodities fu-
tures a profitable strategy.

Institutional investors follow built-up indexes. Each index is made up of its own
uniquely weigthed basket of commodities. The large share devoted to energy futures
reflect the quasi-uniqueness of the “backwardation symptom” in the oil market. The
largest index, SP Goldman Sachs Commodity Index (SPGSCI) devotes a very large
proportion to energy futures (roughtly 70%) while the second largest fund, the Dow
Jones UBS had about 33% of its mix in the energy sector.

Trading commodities derivatives

A traditional view on market efficiency would make deviation of prices from their
fundamentals rare and temporary. If institutional investors had any price impact
and drove a wedge between market prices and fundamental values, the arbitrage
opportunity would cause fundamental (rational) traders to trade against wrongly
informed investors and bring market prices back to fundamental values . Propo-
nents of this view explain the prices surge of the last decade by the increasing
demand from emerging countries, especially China. (Kilian; Krugman).

Another source of confusion relates to alleged “logical inconsistencies” in the
view that financial investment can affect prices even though it only relates to fu-
tures market activity and does not concern spot market transactions. The causal
link between the position taken on futures markets by institutional investors and the
evolution of the cash prices remain complex and unclear. However, for most com-
modities markets, as acknowledged in the Literature (Kilian,Etula (2009),Gilbert)



price discovery seldomly takes place at delivery, most transactions are executed
according to futures prices with reference made to the price of the nearby futures
contracts. Hernandez and Torero (2010) supported evidence that changes in fu-
tures prices lead changes in cash prices more often than not for their case study on
wheat, maize and soybeans.

However, many studies found a clear effect of trading strategies on the prices
evolutions.
Mayer (2009) studies how returns (roll and spot returns) and diversification (prox-
ied by the correlation between returns and SP500 or the dollar, and inflation)
may influence positions taken by traders. This implies regressing the share of net
long positions of index (or money-managers)traders on the explanatory variables
just detailed. Further, using a Autoregressive Distributed Lag model suggested by
Gilbert, he examines causal lead and lag dynamics between position taking and
price developments. In the following equation:

rt =

3∑
j

αjrt−j +

3∑
j

βjxt−j +

3∑
j

γjzt−j + εt

where zt is the weekly change in the net long positions of “money managers” and xt
the weekly change in the net long positions of “index traders”. Mayer tests for the
null that Index positions (respectively Money Managers positions) do not Granger
cause prices. His results indicate that index traders cause changes in prices of soy-
beans, soybean oil, copper and crude oil, while suggesting a causal impact only for
maize. The tests on reverse causality reveal that it is only index position taking in
gold that is affected by price development.

Mou (2010) focusing on the roll strategies of index traders, and using panel-
data regressions documents a subtantial impact of roll strategies on the price of
oil. Combining with Mayer’s finding that roll returns from investment in oil have a
strong and significant impact on index-trader investment; their results support the
hypothesis that index-position changes Granger cause oil-price changes.

Finally, our model builds on the finding of Tang and Xiong (2010). These
authors examine the comovements between indexed and off-index commodities.
Their indentification strategy being built on the finding of Barberis et al. (2002)
that after a stock is added to a SP 500 Index, the price comovement with the index
increases significantly.

Considering that index investors are not particularly sensitive to prices of indi-
vidual commodities because they tend to move in and out of all commodities in a
given index at the same time on the basis of a strategic allocation of their capital
to commodities versus other asset classes such as equities. As a result, any shock
to their strategic allocation to the commodity asset class could cause commodities
in the index to move together. Thus they were expecting price comovements of
commodities in the SP GSCI and DJ-UBSCI to be greater than those of off-index
commodities.
They indeed observe an increasing correlation of non-energy commodities with oil
prices; this trend being more pronounced for commodities in two popular commod-
ity indices.



To the best of our knowledge, few models were developed to explicit how index
investment would tie together a set of commodities, and precipitate higher comove-
ments between their prices; and therefore between investors returns on holding
(usually) long positions on them.
The ambition of our model and its empirical assessment is to capture part of this
controversial fact. Section 2 introduces the model built on the literature of comove-
ments between financial assets; we propose a simple framework which introduces
the covariances of commodities returns with a commodity index and explicit the ef-
fect of this additional term on prices dynamic. Section 3 is a comparative approach
over three different regions: Brazil, China and the United States; We introduce the
dynamic correlation framework recently proposed by Engle to compare commodi-
ties’ prices dynamic in those three markets and present evidence of the specificity
of the American market. In section 4, we assess empirically the intuitions pre-
sented in the model to evidence some specific effects of index investment on tying
up commodities’ prices movements.

2 The Model

The finance literature traditionally models derivatives and hence futures contracts
with Brownian motion (as Basak and Pavlova (2013)). Since our focus is on co-
movement between commodities and equities prices; and since spot and futures
prices for commodities tend to be highly dependant (Spot prices are the underlying
asset upon which derivatives are based, as highlighted in Vivian and Wohar (2012),
we will not model derivatives explicitely. Deriving intuitions similar to ours from
a mixed portfolio- mixed in the sense that it contains regular financial assets in
positive supply and derivatives(futures on commodities) in zero net supply- would
be a promising avenue of research.

In our simple framework, the economy contains a riskless asset, which we assume
to have zero rate of return, and 2n risky assets in fixed supply. The first n assets
are regular financial assets with a dividend process similar to Barberis. The second
part of the assets are claims on commodities produced; whether the futures based
on them is in an index or is not. We will refer to them as indexed or non-indexed
commodities.

The risky asset is a claim to a future dividend Di,T to be paid at some later
time T. As in Barberis, we assume

Di,T = Di,0 + εi,1 + εi,2 + εi,3 + εi,4...εi,T

Where Di,0 is known at time 0, whereas εi,t becomes known at time t. We assume

εt = (ε1,t, ε2,t, ε3,t..., εn,t) ∼ N (0,ΣA)4iid over time.

4The A superscript stands for Asset



The same idea lies for modeling the income received from holding the com-
modity. This assumption of a final payment at time T is even more accurate for
modeling investment in a commodity (in a future backed on a commodity) since
when an agent contracts long on a future as explained in Appendix, he will receive
a payment at T of the form Ft0,t1 + bT , where Ft0,t1 stands for the price of the
future contract at time t0 for delivery at time t1. The only assumption we relax
while considering commodities themselves rather than futures, is the limited and
positive supply Q. If we were to consider futures, we would need Q=0 (zero net
supply) ; but this makes the model hardly tractable.
Rather, we now have a process similar to the regular financial assets for the com-
modities. To rationalize this simplification, one simply needs to assume investors
mostly take long positions on commodities futures, hold this position until time T,
and expect to collect Ft0,t1 + bT ; long positions are in positive and limited supply
hence we can assume Q > 0. For lisibility we will denote the profit made on the
futures as Dt as well.

Di,T = Di,0 + εi,1 + εi,2 + εi,3 + εi,4...εi,T

However, the process εt should not follow a normal distribution, as evidenced from
the literature and from our empirical assessment. Commodities prices tend to be
highly volatile, hence the normality of returns cannot be assumed. Rather we could
assume εt follow a heavy-tail type of distribution centered at 0.

εt = (ε1,t, ε2,t, ε3,t..., εn,t) ∼ H(0,ΣC)iid over time5

The matrix of all εt for all types of assets is therefore: ΣD =

(
ΣA ∗
∗ ΣC

)
Further we assume the variation in price to represent the asset’s return, this is

essentially for tractability. That is

ri,t+1 = ∆Pi,t = Pi,t − Pi,t−1

It first allow us to have a constant variance structure as detailed below (Adding
dividend Dt in the return expression would yield a time-varying variance, and
counter-arguments the view that comovement in returns are due to comovement
in news about fundamental values). For commodities, it is more meaningful to
presuppose a final payment as if investors hold a future contract on them.

2.1 Fundamental View on comovement

Under the fundamental view, comovement in returns are due only to comovement in
news about fundamental values of assets and commodities. The traditional frame-
work to present this view is that of a economy with identical fundamental traders
that maximize CARA utility and take prices change to be normally distributed.

maxωa
t ,ω

c
t
E(−exp(−γ(Wt + ω′t(r

T
t+1))6

5The C superscript stands for commodities
6The T superscript refers to Total return



where ωt = (ωa1
t , ω

a2
t , ...ω

c1
t , ω

c2
t ) denotes the weights assigned to assets and com-

modities. As usual γ governs the degree of risk aversion, Wt is wealth at time t.

We depart from this maximization method because of the non-normality of our
returns; yet assuming investors face a VaR constraint as in Etula (2010), we can
derive very similar expression for the shares and variances. Our investors maximize
Et(r

T
t+1) subject to a VaR constraint, where rTt+1 is given by

ωa1
t r

a1
t+1 + ωa2

t r
a2
t+1 + ...ωc1t r

c1
t+1 + ωc2t r

c2
t+1 + ..

As in Barberis, we may assume the risk aversion of fundamentals traders remain
constant over time, that is κµt = γ.

Following Danielsson et al. (2004) and Etula (2009), we suppose investors max-
imize expected return on equity subject to a VaR constraint 7 :

maxωa
t ,ω

c
t
Et(r

T
t+1) subject toV aRt < et

If we assume V aRt is some multiple κ of the forward looking standard deviation of

the equity returns et

√
V art(rTt+1), the constraint becomes

√
V art(rTt+1) ≤ 1

κ .

Denote ωt = (ωa1
t , ω

a2
t , ...ω

c1
t , ω

a2
t ...) the vector of shares, and rt+1 the vector of

returns.

The Lagrangian is

L = Eωa
t ,ω

c
t
(rTt+1)− µt(

√
V art(rTt+1)− 1

κ
)

Maximing over the share 8 ωt gives:

ωt =
1

γ
V art(rt+1)−1Et(rt+1) (1)

We therefore derive the same very standard expression of the optimal share (or
weight) as the ratio of expected return on the variance. ωt = 1

γV ar
−1
t Et(Pt+1−Pt)

If the total of assets and commodities available is given by a vector Q, then the
market clearing condition gives: Pt = Et(Pt+1)− γVtQ

We will roll this equation forward, and set ET−1(PT ) = ET−1(DT ) = DT−1

where
Dt = (D1,t, D2,t, D3,t, ...)

7In Danielsson et al. (2004) and Etula (2009) investors risk appetite shifts endogenously with balance
sheets constraints that fluctuate with market outcomes. The balance sheet constraints are imposed by a
contracting setting which yields a value-at-risk rule: Investors (broke-dealers) leverage is limited by this
value-at-risk constraint.
Adrian and Shin (2008) provide a micro foundation for this constraint from a moral hazard problem
between borrowers and lenders.

8Here we are assuming the shares dedicated by fundamental traders to assets or commodities are the
same, this assumption could be relaxed yielding much more complex derivation



.
Notice that for the commodities, we therefore need to assume that the process
followed by the εt will be a zero-mean process, even if it needs not be normal.

Pt = Dt − γVtQ− Et(
T−t−1∑
k=1

γVt+kQ) (2)

The crucial assumption comes here, fundamental traders set a constant for the
variance, given by the above matrix:

Vt = ΣD

Then equation reduces to

Pt = Dt − (T − t)γΣDQ

This means that up to a constant, the price difference will be:

∆Pt+1 = ∆Dt+1 = εt+1

Therefore the variance, Vt = V art(∆Pt+1) is indeed constant, confirming the traders
conjecture.

This equation is a very simple way to say that comovements in returns reflects
comovements in the news process εt.

2.2 Introducing institutional investors

We now introduce a second type of investors 9, their total returns is given by

rTt+1 = ωa1
t r

a1
t+1 + ωa2

t r
a2
t+1 + ...ωc1t r

c1
t+1 + ωc2t r

c2
t+1...+ qtr

I
t+1

where qtr
I
t+1 reflects the returns on some holdings qt of index shares. The index

is a commodity index such as Goldman Sachs GSCI or the Dow-Jones DJ-UBSCI.
As in Etula, the returns on the index does not enter the market portfolio but it
influences the portfolio choice. This specific term for institutional investors (those
who invest in an index) carries all the specificities of our simple framework. While
maximazing as previously, we now get a slightly modified version of the optimal
share for those investors.

The investor has a total return given by: rTt+1 = ωa1
t r

a1
t+1 +ωa2

t r
a2
t+1 + ...ωc1t r

c1
t+1 +

ωc2t r
c2
t+1...+ qtr

I
t+1

He maximizes Eωa
t ,ω

c
t
(rTt+1) for all assets a and all commodities c, subject to V aR <

e where V aR (Value-at-Risk) can be defined with trader equity e and V ar(rTt+1).

We set-up a Lagrangian

L = Eωa
t ,ω

c
t
(rTt+1)− µt(

√
V art(rTt+1)− 1

κ
)

9For a clear understanding of the different type of investors and their behaviors, you can refer to
Lilliston and Ranallo (April 2011) page 27



Developing the Variance and deriving with respect to a specific weight ωait or
ωcit yields

d

dωcit
Et(r

T
t+1) + µt

(2ωcit V (rcit+1) + 2cov(rcit+1, r
I
t+1)qt + 2cov(rcit+1, ωi

∑
i r
ai,ci
t+1 )

2
√
V art(rTt+1)

= 0

Since the derivation is inserted in the expectation, this yields:

Et(r
ci
t+1) = −µt

2ωcit Vt(r
ci
t+1) + 2covt(r

ci
t+1, r

I
t+1)qt + 2cov(rcit+1, ωi

∑
i r
ai,ci
t+1 )

2
√
V art(rTt+1)

Using the binding constraint, we therefore have:

ωcit µtκVt(r
ci
t+1) = Et(r

ci
t+1)− covt(rcit+1, r

I
t+1)qt − covt(rcit+1, ωi

∑
i

rai,cit+1 )

That is ωcit =
Vt(r

ci
t+1)−1[Et(r

ci
t+1)− covt(rcit+1, r

I
t+1)qt − covt(rcit+1, ωi

∑
i r
ai,ci
t+1 )]

µtκ

The same formula holds for the assets ai.
The key term in this expression is covt(r

ci
t+1, r

I
t+1)qt, the second term cov(rcit+1, ωi

∑
i r
ai,ci
t+1 )

which captures the covariance of the commodity ci (respectively the asset ai) con-
sidered with all other assets and commodities was implicitely present in the earlier
derivation 1.

Therefore the demands by institutional investors will be rewritten as some con-
stant, plus a term capturing the time-varying covariance and the changing risk
appetite of institutional investors.

ωi, t =
1

n
[AA +

qtcovt
µtκ

] for i ∈ A (3)

ωj , t =
1

n
[AC +

qtcovt
µtκ

] forj ∈ C

ωj , t =
1

n
[A′C +

qtcovt
µtκ

] for j ∈ C ′

Where C denotes those commodities which are indexed while C’ denote those which
are not indexed. We might denotes covt for covt(r

ai
t+1, r

I
t+1) or covt(r

ci
t+1, r

I
t+1) to

avoid notational clustering.
The demand for the assets and commodities by the institutional investors de-

pend from now on their expected covt with the returns on the index.
This additional term is analogous to the noise introduced by some traders in Bar-
beris model.
Let’s observe now how the prices of assets and commodities may respond to changes
in the expected covariance.

This economy still has fundamentals traders, their perception of the prices evo-
lution will allow us to derive explicit formula for the returns, or prices’ changes.



Consider again the price as perceived by fundamentals traders, given their expec-
tations about future prices, current prices are given by:

Pt = Et(Pt+1)− γ(Q− ωIt )10

They treat the institutional traders demand as supply shock. where ωIt = (ωa1
t , ω

a2
t ..ω

c1
t , ω

c2
t ...)

Rolling the equation forward as previously and setting again ET−1(PT ) =
ET−1(DT ) = DT−1 yields

Pt = Dt − γVt(Q− ωIt )− Et(
T−t−1∑
k=1

γVt+kQ− ωIt+k)

Now, we may distinguish between the commodities in and off index. Denote ci′

the subscript for those commodities which are not indexed.Now we have:

∆ωIt =

∆
qtcovAt
µtκ

∆
qtcovCt
µtκ

δ


δ reflects a very small quantity. Indeed, for those commodities off index, since

the covt above is negligible, the demand of institutional traders ωci
′

t will be not vary
much in time; one could assume it is constant and set δ = 0 above.

The fundamental traders conjecture a structure of the variance matrix as:

Vt = σ2

At Bt ∗
Bt At ∗
C D ∗


Define the covariances between returns within a class as ρ1

i,j,t and the covari-

ances between assets’ and commodities’ returns as ρ2
i,j,t. Traders conjecture the

matrix of variance-covariance for periods ulterior to t+ 1 as W, a constant 11

Further, we will be imposing that the cash-flow shocks; the justifications are not
central to our analysis and will be detailed in Appendix( 6.2) εi,t+1 and εj,t+1 will

be related such that: Σi,j
D ≡ cov(εi,t+1, εj,t+1) =


1, i = j
π for i,j in the same category
υ for i,j in different categories

10The I superscript stands for Institutional investors
11We have Vt = W constant for subsequent periods if the two ∆ωts which capture covariance and risk

aversion are assumed to be jointly independant. That is :

∆
covt(r

A
i,t+1, r

I
t+1)qt

µtκ
is independant of ∆

covt(r
C
i,t+1, r

I
t+1)qt

µtκ

for all subsequent periods, and the variance of any ∆
covt(r

C
i,t+1,r

I
t+1)qt

µtκ
is assumed to be constant. These

necessary conditions can easily be recovered from equations 10 to 7



However, the matrix Vt might be time dependant, and they might conjecture
the following form for At and Bt:

where At and Bt are defined as

At =


ρ1

1,1,t ρ1
1,2,t · · · ρ1

1,n,t

ρ1
2,1,t

. . .
. . .

...
...

. . .
. . . ρ1

n−1,n−1,t

ρ1
n,1,t · · · · · · ρ1

n,n−1,t ρ1
n,n,t

 , Bt =


ρ2

1,1,t · · · · · · ρ2
1,n,t

...
. . .

. . .
...

...
. . .

. . .
...

ρ2
n,1,t · · · · · · ρ2

n,n,t


for some σ2, ρ1

i,j,t and ρ2
i,j,t where 1 and 2, as supercript, refer to the the within or

between classes covariances.

Recall that those matrices are only forecasts, therefore even if omitted to avoid
excessive notation there should be expectations of variances-covariances matrices.

Traders may assume for simplicity that ρ1
i,j,t+1 − ρ1

i,j,t = ρ1,i,j + εi,j,t ; similarly

ρ2
i,j,t+1 − ρ2

i,j,t = ρ2,i,j + ε2,i,t for some constant depending on the class (assets or
commodities) ρ1,i,j and ρ2,i,j for all i and j.

We may also assume ρ1
i,i,t+1 − ρ1

i,i,t = ε1i,i,t and ρ2
i,i,t+1 − ρ2

i,i,t = ε2i,i,t for some
epsilon centered at 0.

Therefore the matrix E(Vt+1 − Vt) will rewrite:

V = σ2

A B ∗
B A ∗
C D ∗


where A and B are given by:

A =


0 ρ1,1,2 · · · ρ1,1,n

ρ1,2,1
. . .

. . .
...

...
. . .

. . . ρ1,n−1,n

ρ1,n,1 · · · ρ1,n,n−1 0

 , B =


ρ2,1,1 · · · · · · ρ2,1,n

...
. . .

. . .
...

...
. . .

. . .
...

ρ2,n,1 · · · · · · ρ2,n,n


(4)

This hold for some ρ1,i,j and ρ2,i,j where the first index in the underscript from now
and thereafter refers to the within or between classes covariances.

Notice the zeros on the diagonal, they will make the covariance of a specific
asset with rIt disappears from the returns expressions (5) and (6).
Further they may assume a negligible covariance of returns between assets and non-
indexed commodities, and between indexed and non-indexed commodities, therefore
C and D would be null. Assuming investors can only conjecture covariance and
risk aversion one period ahead, they might infer that the posterior demand of
institutional investors on the assets will have a similar expression as in Barberis.
That is they will assume that ω = 1

n [A+ u] where u follow a law centered at 0. In
this case, the simplification below holds. Further, remember traders were assuming



the matrix of variance-covariance Vt to be constant after t+1, and set Vt = W The
price expression is

Pt = Dt − γVt(Q− ωIt )− (T − t− 1)γW (Q−A)

where A = (
AA
n
, ...

AA
n
, ...

AC
n
...
A′C
n

)

Therefore, this means that up to constant:

∆Pt+1 = εt+1 − γQE(Vt+1 − Vt) + γE(Vt+1 − Vt)∆ωIt

Since the second term on the right hand side is now fixed, we have up to constant:

∆Pt+1 = εt+1 + γV∆ωIt

This writes:

∆PAt+1

∆PCt+1

∆PCt+1
′

 =

 εAt+1

εCt+1

εCt+1
′

+ γV

∆ωAt+1

∆ωCt+1

∆ωCt+1
′



∆Pi,t+1 = εi,t+1+
∑
i′

ρ1,i′∆
covt(ri′,t+1, r

I
t+1)qt

µtκ
+
∑
j

ρ2,j∆
covt(rj,t+1, r

I
t+1)qt

µtκ
for i ∈ A

(5)

∆Pj,t+1 = εj,t+1+
∑
j′

ρ1,j′∆
covt(rj′,t+1, r

I
t+1)qt

µtκ
+
∑
i

ρ2,i∆
covt(ri,t+1, r

I
t+1)qt

µtκ
for j ∈ C

(6)
Where C denotes those commodities which are indexed.

∆Pj,t+1 = εj,t+1 for j ∈ C’ where C’ denotes those commodities which are not indexed
(7)

For expository purpose, we previously considered that traders were holding n
standard financial assets, and n claims on commodities, this can easily be mod-
ulated. We provide a simple example. Consider we have two risky assets, two
indexed commodities and two non-indexed commodities. Next suppose the trader
assumes the following V matrix.

V =



a1 a2 c1 c2 c1′ c2′

a1 0 ρ1,1,2 ρ2,1,1 ρ2,1,2 0 0
a2 ρ1,2,1 0 ρ2,2,1 ρ2,2,2 0 0
c1 ρ2,1,1 ρ2,1,2 0 ρ1,1,2 0 0
c2 ρ2,2,1 ρ2,2,2 ρ1,2,1 0 0 0
c1′ 0 0 0 0 0 0
c2′ 0 0 0 0 0 0


where the first index in the underscript refers to the within or between classes

(1 or 2). Then:



∆Pa1,t+1 = εa1,t+1+ρ1,2∆
covt(ra2,t+1, r

I
t+1)qt

µtκ
+ρ2,1∆

covt(rc1,t+1, r
I
t+1)qt

µtκ
+ρ2,2∆

covt(rc2,t+1, r
I
t+1)qt

µtκ
(8)

∆Pc1,t+1 = εc1,t+1+ρ1,2∆
covt(rc2,t+1, r

I
t+1)qt

µtκ
+ρ2,1∆

covt(ra1,t+1, r
I
t+1)qt

µtκ
+ρ2,2∆

covt(ra2,t+1, r
I
t+1)qt

µtκ
(9)

Those equations imply there can be a common factor in the returns of a group
of assets; in particular any shock to the expected covariance covt may affect the
returns on the assets and indexed commodities while leaving the non-indexed com-
modities unchanged.

As evidenced in the above formula and from the shares expressions (equation 3
and subsequents) shocks from institutional traders demand may emerge from three
different components.
Consider first a change in µt the Lagrangian, reflecting how binding is the VaR
constraint; As the balance sheet binds harder, the shadow price µt increases, and
leverage must be reduced. This impacts necessarily the investor portfolio and will
affect therefore commodities prices.
Secondly, one can think of a shock to covt. As the covt decreases, the share allo-
cated to some asset i responds positively; since all shares must sum to 1; this implies
rebalancing portfolio. Therefore the shares allocated by institutional traders evolve
across time depending on the perceived covt of the return of the index with other
assets.
Eventually, a shock to the parameter qt representing the relative importance of the
index return in institutional investors portfolio will necessarily impact commodities
prices.

Another observation needs to be made. We are talking about an updating pro-
cess, where shares and prices evolve through time. Each period, the institutional
trader rebalances his portfolio taking into account the covariance of returns. Fol-
lowing formula 10, the returns on those indexed commodities may change provided
they are rebalanced by large number of traders. Therefore, their covariances with
the returns on the index will change itself, leading to further rebalancing. Large
changes in prices and returns may therefore be observed. This model therefore
accounts for large change in prices as observed in the literature and detailed in the
introduction. If institutional investors are enough (or big enough) to bid up on
prices (rebalance their portfolio toward specific commodities), fundamental traders
might not be willing or capable of countering their effects on prices.
The fact that institutional investors whose investment capacity may go beyond
the normal absorption capacity of other market participants can severely impact
prices’ evolution was behind Hong and Yogo’s intuition. In a 2012’s paper, they
have shown that open interest positions can be a reliable determinant of future
economic activity and asset prices.

Further, the covariances between commodities (whether they are or not in the
index) and between commodities and other financial assets enter as a key feature
of the model. It enters as an input to account for the change in prices, and as an



output by the process explained above. Observing how conditional covariances of
returns have evolved through time; and how we may observe spillovers from and to
financial and commodities markets will be detailed in the empirical section.

3 Geographic-based comparison

The argument justifying the recent price surge for various commodities, particularly
marked for metals and energies was the growing demand from emerging countries.
An interesting study to implement therefore is a geographic-based comparison to
observe if those price evolutions have occured similarly in emerging markets. This
first descriptive approach helps us grasp the singularity of the US markets while
considering the behaviors of commodities prices.

We use Brazil and China as counterfactual to observe prices’ evolution and dy-
namic correlations between various commodities. Both are large producers and
consumers of commodities, China being particularly keen on metals, while Brazil is
a large exporter of exotic, softs and livestocks (cattle). It is also needless to men-
tion that if futures exist for these markets, to the best of our knowledge commodity
index investment does not.

For Brazil, we select 8 commodities whose time series draw back to 2004. They
include Wheat, Soybeans, Corn, Sugar, Feed Cattle, Gold, Natural Gas and Diesel.
The data are extracted from Datastream are presented in Appendix.We therefore
have a set of diverse commodities where we can implement pairwise comparison
between supposedly unrelated (in the sense given by Pindyck) commodities. The
time range selection is justified mostly by the time range availability. Monthly US
data are extracted from various sources: EIA, IMF, and UCSA. We select grower
or spot prices, with the exception of sugar in the US where the futures’ price is used.

The same process is repeated for China whereas we rely this time on a differ-
ent set of commodities. The time range for certain commodities in China (Wheat,
Copper, and Aluminium) is also larger. The commodities are: Wheat, Soybeans,
Cotton, Sugar, Aluminium, Oil and Copper. The prices used are from futures con-
tracts. This is both due to unavailability of data and the fact that the government
does not report monthly prices consistently and always changes the methods and
reporting of growers prices. All prices series have been plotted and displayed in 7
and subsequents.
The returns are defined as

Rt = ln(
Pt+1

Pt
) ≈ Pt+1 − Pt

Pt

We use montlhy log-returns, they can easily be interpreted as a percentage change
from month to month. Interestingly, log returns exhibit more erratic behaviors on



the US markets as compared to Brazil.12. This is particularly true for gold, cattle,
natural gas, sugar, and soybeans. The magnitude of changes is generally ten time
larger for the US commodities. Similarly the magnitude of changes of prices for
China (see the figure8) is much comparable to Brazil than to the US.

3.1 Dynamic Conditional Correlations

Our first investigation rely on the DCC approach as followed recently by Creti,
Joëts, and Mignon (2012). However, if these authors documents a substantial in-
crease in the correlations between SP500 and various commodities; our analysis
extend to across commodities dynamic correlations and especially dynamic corre-
lations with oil, the central composite of indexes.

3.1.1 Methodology

Consider n time series of returns and make the usual assumption that returns are
serially uncorrelated. Then, we can define a vector of zero-mean white noises εt =
rt−µ, where rt is the n×1 vector of returns and µ is the vector of expected returns.
Despite of being serially uncorrelated, the returns may present contemporaneous
correlation. That is:

Et−1[(rt − µ)(rt − µ)′] = Σt

may not be a diagonal matrix. Moreover this comtemporaneous correlation may be
time-varying depending on past information such as presented in the model.

The GARCH-DCC involves two steps. The first step accounts for the conditional
heteroskedasticity. It consists in estimating, for each one of the n series of returns
rit, its conditional volatility σit using a GARCH model. Let Dt be a diagonal matrix
with these conditional volatilities, i.e. Di, it = σit if i = j, Di,j

t = 0 if i 6= j. Then
the standardized residuals are:

νt = D−1
t (rt − µ)

Therefore these standardized residuals have unit conditional volatility. Now,
define the matrix:

R̄ =
1

T

T∑
t=1

νtν
′
t

This is the Bollerslev’s Constant Conditional Correlaton Estimator.

The second step consists in generalizing Bollerslev’s CCC to capture the dy-
namics in the correlation, hence the name. The DCC correlations are:

Qt = R̄+ α(νt−1ν
′
t−1 − R̄) + β(Qt−1 − R̄)

So, Qi,jt is the correlation between rit and rjt at time t. This is what is plotted
on the presented graphics.

12The plots of log returns are not presented in this report but available upon request



For the second step, which is the DCC estimation per se, standard softwares
estimates both parameters, α and β simultaneously, by maximizing the log likeli-
hood. The standardized residuals are assumed to be jointly Gaussian. The DCC
model captures a stylized facts in financial time series: correlation clustering. The
correlation is more likely to be high at time t if it was also high at time t-1. Another
way of seeing this is noting that a shock at time t-1 also impacts the correlation
at time t. However, if α + β < 1, the correlation itself is mean reverting, and it
fluctuates around R̄, the unconditional correlation.
Usual restrictions on the parameters are α, β > 0. Though, it is possible to have
α+ β = 1; the conditional correlation is then an integrated process.

3.1.2 Results

The DCC approach allows us to evaluate the evolutions of correlations between
equities and various commodities as in Creti et al. (2012). We extend their analysis
to various commodities, with a particular focus on the dynamic of oil with other
commodities. The results are presented in below 213 and in Appendix.
On the figure 2 which considers the US market we can observe a break around
2008-2009 in the dynamic correlations of the SP500 with grains, industrial metals
and crude oil. The dynamic correlation of SP500 with grains tends to fade out
more recently.
On figure 3, the dynamic correlations of oil are presented. If the effects of the crisis
on these dynamics tend to weaken for grains and softs, the correlation of industrial
metals with oil remains high.
Similarly, for wheat and copper (Figure 4 and 5) the clear effects of the 2008 crisis
can be observed, but dynamic correlations tend to revert to the mean in more re-
cent time (which is also due to the specification of the DCC model).

To examine if this increasing correlation between oil and other commodities is
characteristic of the US market, we plot the DCC of various commodities in China
with oil 914. The price evolution of oil in China displayed in picture 8 was sub-
dued and less erratic than in the US; in particular we could not observe the intense
increase characteristic of the US market.
However, as presented on the graph 9, one can also contemplate an increased corre-
lation of oil with industrial metals and cotton or soybeans in China. The correlation
of oil with Aluminium and Copper has climbed to almost 0.5, and this with Copper
has remained very high since then. This is comparable to the evolution of the GSCI
Copper Index with oil as in 13, but the magnitude remains lower in China than
in the United States, whereas the demand for both energies and metals is larger in
the former.

Figures 13 and 9 permit to continue the comparison while considering the
dynamic correlation of various other commodities.
Wheat, aluminium and copper time range extends to 1993 in China; one can con-
template no particular evolution in an historically low correlation between wheat

13The graphs for the United States when compared to China were made using Vlab.
14As robustness check, the DCC were also computed using daily returns rather than monthly. The

results were not quite similar evidencing that the dynamic correlations tend to be sensitive to the selected
period. Yet, on a broader basis they exhibited the same dynamic.



and those metals. This is in striking contrast with the evolution observed in the
United States as presented in figure 13.
Similarly, the correlations of soybeans or cotton with wheat, aluminium and copper
tend to be higher and mark a brutal increase around 2008 in the United States,
these behaviors are not observed in China except for the correlation of soybeans
with copper.

Pairwise DCC are plotted for Brazil versus United States for various commodi-
ties. Mainly, the dynamic correlations of commodities in Brazil are lower, except
for the correlation of natural gas and cattle which surprisingly reaches the top 16.
An observation of the price dynamics 6 given in Appendix confirms that those two
commodities have followed a very similar trend since 2004.
As a conclusion, the correlations of commodities prices tend to be higher in the US
as compared to two large commodities consumers. An observation which justifies
the accuracy of our problematic: could this pattern be partially explained by the
financialization of commodities in the United States?



Figure 2: DCC of the SP500 with grains, crude oil and industrial metals

Figure 3: DCC of the all crude GSCI with grains, industrial metals, and softs

Figure 4: DCC of Copper with Coffee, Cotton, and Soybeans

Figure 5: DCC of Wheat with Cotton, Softs, and Cocoa



4 Uncovering a channel: the covariances of commodities
returns with the index return

Tying together a set of seemlingly unrelated commodities through financial in-
struments could explain the increasing linkage within the commodities class, and
between this class and standard financial assets. To test for this hypothesis, recall
our equations that were relating commodities prices with the covariances of price
changes and the financial return on a commodity index:

∆Pa1,t+1 = εa1,t+1 +ρ1,2∆
covt(ra2,t+1, rIt+1)qt

µtκ
+ρ2,1∆

covt(rc1,t+1, rIt+1)qt

µtκ
+ρ2,2∆

covt(rc2,t+1, rIt+1)qt

µtκ
(10)

∆Pc1,t+1 = εc1,t+1 +ρ1,2∆
covt(rc2,t+1, rIt+1)qt

µtκ
+ρ2,1∆

covt(ra1,t+1, rIt+1)qt

µtκ
+ρ2,2∆

covt(ra2,t+1, rIt+1)qt

µtκ
(11)

Our main target is not on the parameters κµt and qt, the former being investi-
gated in Etula (2009) and the latter being an inviting pursuit to complement our
study. Rather, we focalize on the covariances’changes terms in the above expres-
sions. The above formula could be reformulated as:

(ExcessFuturesReturnj) = b0+b1covt(ER
′
j , ERindex)+b2covt(ERSP500, ERindex)+b3covt(ERoil, ERindex)+...

(ExcessSpotReturnj) = b0+b1covt(ER
′
j , ERindex)+b2covt(ERSP500, ERindex)+b3covt(ERoil, ERindex)+...

In this section, we will first present our strategy and methodology to empirically
assess these equations and further comment on the results obtained.
The tedious part in the empirical investigation was to measure investors returns.
From holding a commodity we defined previously the return as the price difference
from t to t+1. However, investors’ returns when investing in an index is threefold.
The price difference is the spot return, but roll yield and collateral return adds
up to it. The roll yield reflects the return (positive or negative) from rolling one
contract into the next.15 16

Spot return is defined in Tang and Xiong’s or Etula’s are simply the price dif-
ference over a day, month or quarter 17. Futures excess returns however are usually
computed as in Gorton and Rouwenhorst (2004) or Erb and Harvey (2005) by con-
structing a return from rolling the first-month futures contract of the commodity

15For example, the S&P GSCI total return index measures a fully collateralized commodity futures
investment that is rolled forward from the fifth to the ninth business day of each month. Excess return
comprises both spot return and roll yield. The S&P GSCI excess return is the measure of commodity
returns that is completely comparable to returns from a regular investment in SP 500 (with dividend
re-investment) or a government bond.

16For further clarification on these different type of returns adcquired by investors in commodity
indexes Anson (1998)

17Excess spot returns are usually generated by subtracting the Treasury bill rate from it but we allowed
ourselves to use simply spot returns



on a fully collaterazlized basis. 18

This means accessing data (Bloomberg provides some) procuring expiry date of
contracts, since those were not available we therefore rely on a different strategy.

We use Datastream series to apprehend effective returns. Datastream series
take the form of prices, total or excess returns indices. Those two latter follow the
performances of commodities both for spot and futures, in particular they capture
the price’s change and the change in roll yield and collateral return. Excess and
total return usually follow the exact same trend, at slighty different levels while the
underlying price series is also often following the same trend.
Since our focus is on comovement of returns, using indices or effective returns should
not greatly affect the computation of covariances.
Our covariances will capture how the trend in different returns co-move, that is
how the average returns of investors holding such or such assets or commodities co-
move. In particular, the key element entering each covariance is the return on the
index, rIt , this return is computed from the excess commodity returns of Goldman
Sachs defined as GSCIEXR.

Datastream proposes numerous series accouting for the evolution of total and
excess returns for different commodities and investment institutions such as Gold-
man Sachs Commodity Index (GSCI) Merill Lynch (MC), or the Dow Jones UBS
Commodity Index (DJCI).We will also use those series to reflect the effective re-
turns of investors from holding futures.The main series used are displayed in Table
2 in Appendix.
The above figure graphs the evolutions of some financial indices, clearly they ex-
hibit a trend and are non-stationary. Our methodology consists in considering those
indices series as if they were prices series, this procedure is applied for both rIt and
excess futures returns. 19

Once those series in hand 20 we can calculate the time dependant covariances
of these with rIt .
Finally, we regress ∆Y t

Yt
where Yt is either a spot price, either a futures’excess return

on a set of covariances’changes.
As a methodological note, notice that if the covariances were calculated using only
a first difference on the series far more coefficients on covariances’changes would
remain significant. A striking example was wheat which was extremely responsive
if the covariances were computed using a first difference, while not particularly (it
is therefore not included in the first tables) if the covariances are computed using
returns.

The examination was conducted with a sample of 20 futures and 25 spot prices
21 including various metals; grains and energies. The earliest series start in the
seventies, the latest begin in the early 2000s. Most series especially cover the last
15 years when the financialization of commodities could have been observed.
Our examination involved a major pitfall, commodities covariances with the GSCI

18The excess return of this hypothetical investment would therefore be defined as ri,t = ln(Fi,t,T ) −
ln(Fi,t−1,T ) where Fi,t,T is the price of the future contract held on date t with maturity T.

19We therefore compute ∆Y t

Yt
when Yt is defined as an excess returns index.

20or the spot returns Pt+1−Pt

Pt
when prices series were available.

21or excess returns series



black: SP500 price index, blue: Goldman Sachs crude oil excess return, green: GS Commodity excess return, red:Long only excess return.

(especially for metals) tended to exhibit very similar trends, generally with a pick
around 2007-2008 resulting in a multicollinearity issue and potentially unconsistent
coefficients estimates. To insure the robustness of the results, a careful check of the
plot of covariances was conducted when including them in a regression. Thereafter,
a thorough analysis conducted by adding, dropping covariances as predictors was
implemented for all commodities; usually when not significant the covariances were
dropped to avoid unexpected interactions between covariances as predictors. The
results while quite promising tended to be very sensitive to the choice of window
to compute the covariances(windows of 2,5 and 10 months were used, eventually
leading to a choice of a 5 months window), and to the addition or deletion of co-
variances. This latter process sometimes had strong impact on the significance of
the coefficients.

4.1 Results

We start our analysis considering futures. According to the literature, the effects
are usually more pronounced while considering futures’excess returns rather spot
excess returns.
All predictors have been scaled to facilitate interpretation and all results are dis-
played in percentage points. In 3, for instance if the level of the covariance of
the return on corn with the GSCI index return is one standard deviation above
average investors will accept about -2% percentage point lower returns on their
long positions in aluminium or zinc over the following month, while -4% for tin,
similarly they would accept about -1% on their returns on the Dow Jones or SP500
representing their equities positions in the model.

Many futures’ prices did not (or only marginally) respond to covariances’ changes,
this includes wheat, coffee, cattle, but also some metals such as silver; only the
most striking results are presented in Appendix. Nevertheless, their covariances



with the return on the index rIt might impact other commodities’ futures’prices as
evidenced with wheat which enter significantly and positively for aluminium, tin,
zinc and corn.
As expected, within a same commodity class (ie metals, grains or energies), the
effects observed were more frequently significant, highlighting some common un-
derlying factors which could be unrelated to index investment. However, the effects
of wheat, corn or soybeans on metals would hardly be justified by any common
external factors, the cross-elasticities of those commodities being quasi-null. This
lends support to the view that commodity index investing could be this common
denominator.

Since many futures contracts started in the mid-late 90s, the full sample includes
only from 166 to 199 observations. While keeping the same set of explanatory co-
variances, the results for the subperiod 2003-2013 are also presented in table 4, the
effects on prices (returns) are usually larger for this subperiod acknowledging the
peculiarity of the crisis period and the boom and bust in energies commodities. If
the covariance of wheat with the GSCI index is one standard deviation above aver-
age, investors will require 1.5 to 3% higher returns on aluminium, tin, zinc and corn;
while if the the covariance of corn with GSCI index is one standard deviation above
average, they will accept -2 to -6% lower returns for these metals over the following
month; while they would accept about -1% lower returns on their equities positions.

The covariances were inserted both in levels and in differences, interestingly and
in concordance with the model the significance of coefficients was usually greater
for the change in covariances 22. Notice also that, if inserted as a control variable,
the covariance of any specific asset with the return on the GSCI is generally non
significant, as proposed in our model 4. That is the return on the asset ai or
the commodity ci essentially depends on others commodities or assets covariances
with the GSCI excess return, the covariance change ∆covt(rci,t, r

I
t ) seldomly enter

as a significant predictor of rci,t+1. This is consistent with the observation that
many commodities returns (most indexed), during the last decade, have experienced
unexpected prices’ fluctuations. Even if their prices may only be affected by the
covariances of other indexed commodities with the return on the index (rIt ); by
a feedback effect, the covariance covt(rci,t, r

I
t ) will a period later for instance also

affect rci,t+1.
Let us detail this intuition. Suppose you have three commodities c1 to c3 and one
risky asset a1. Our expression for the returns are :

∆Pc2,t+1 = εc2,t+1 + ρ1,1∆
covt(rc1,t+1, r

I
t+1)qt

µtκ
+ ρ1,3∆

covt(rc3,t+1, r
I
t+1)qt

µtκ
(12)

∆Pc1,t+1 = εc1,t+1+ρ1,2∆
covt(rc2,t+1, r

I
t+1)qt

µtκ
+ρ1,3∆

covt(rc3,t+1, r
I
t+1)qt

µtκ
+ρ2,1∆

covt(ra1,t+1, r
I
t+1)qt

µtκ
(13)

Suppose some shift of the perceived covariance covt(rc1,t+1, r
I
t+1), it does not

enter directly in equation 13, but it affects the returns ∆Pc2,t+1 , and similarly
could affect ∆Pa1,t+1, therefore the perceived covariances covt(rc2,t+2, r

I
t+2)qt and

covt(ra1,t+2, r
I
t+2)qt could shift impacting in the subsequent period the return on

22Therefore, except if mentioned differently all covariances enter in changes.



commodity c1. 23

In table 7 we present the results of a similar analysis using spot prices. As
expected the results using spot prices were feebler, previously responsive series
such as aluminium or corn were responding to very few covariances’ changes. The
results for cotton and cocoa previously omitted since they were respondent to no
more than three covariances (while using futures) are presented through this spot
analysis. Using futures, cocoa was also responsive to the covariance change of gold
with energy. Notice that if tin is not presented, it was one of the most respondent
commodity in spot price, as evidenced from table 1 given in Appendix.

Till now we have not mentioned any result regarding equation 7 which stated
that the returns (respectively prices) of non-indexed commodities should not re-
spond to changes in the covariances terms. This equation was certainly empirically
verified for prices series such as lumber, oats, rough rice among others which are
supposed to carry no weight in the GSCI index, these commodities were not re-
sponding to any covariances change. As a counterfactual exercise, we present the
results of regression specifications for some of these supposedly independant and
unsensitive commodities. We use the exact same specifications implemented in ta-
ble 7. Crude oil for covariances in level and in changes is replaced by palladium,
which still show some responses; soybeans is replaced by soybean meal, copper (in
changes and in level) is replaced by titanium. Corn is replaced by sugar which we
had noticed was not responding in differently specified regressions. We also add
electricity and gas, two totally ’indifferent’ commodities.
For electricity for instance, only the coefficient of the covariance of gold with energy
enters significantly in the second specification.
As said previously, other commodities sometimes included in a commodity index
such as the GSCI were not either responding; this could also be due to our choice
of contracts or the series time range. This work could be improved by testing for
many different series of the same commodity to observe the differences in responses.

4.2 Robustess Check

Our first estimation demonstrates that covariances of commodities returns with
the GSCI return are statistically significant predictors of many commodity futures
returns. In this subsection we investigate the extent to which controlling for others
common predictors of commodity returns might affect those results.

In table 5, we first introduce common predictors such as the VIX volatility
index, the US consumer price index both lag by one month, and the 3 months
Treasury Bill rate; for copper, soybeans and oil the total open interest positions is
also inserted (denoted OI) 24

For the latter, we mentioned previously the work of Hong and Yogo (2012) who
have shown that total open interest positions could be a significant predictor of re-
turns, and indeed for all three commodity (oil, soybean and copper) open interests

23We did not test for this lagged reponse of a return rc1,t+k to a shift in the perceived covariance
covt(rc1,t+1, r

I
t+1), but it would be an engaging pursuit of research.

24I would like to thank Yannick LePen for providing me the data on open interest positions and the
Han and DeRoon index used thereafter



enter significantly.

Our results are robust to the insertion of those control variables. For instance,
one may observe that the lag covariance of copper has an as strong effect that
the volatility proxy on the zinc returns but in the opposite direction; however the
current covariance change of lead has a negative and larger effect (about -4%). If
these effects within the metals class may not be surprising since they are somehow
related in their use as an industrial input, our results also show that there is a link
with unrelated commodities. Zinc being responsive to wheat and corn as mentioned
previously.

In table 6, we also add the one month lagged Han and DeRoon indexes. The
Han index measures speculators sentiment by considering their relative long and
short positions, it is defined as:

HanIndex :
number of long speculative positions - number of short speculative positions

total open interest

and is contructed using CFTC data. The DeRoon index is a measure of trading
activity, roughtly it is an estimate of hedging pressure in commodities markets and
is defined as :

RNV :
number of short hedge positions - number of long hedge positions

total number of hedge positions

The idea is to consider the positions of hedgers, ie traders who have a cash business
for the commodity. Notice however, than these variables didn’t enter significantly
for oil and soybeans and were dropped in the interest of space; they are are signif-
icant for copper and are respectively denoted ’copper S and R’. 25

A final interesting perspective to mention in this study was to observe the effect
of lags covariances (indeed we use only lag covariances rather than the lag of covari-
ances’change) on the returns; this would suppose a slight modification of our theo-
rical model. Investors would rather than anticipate the covariances’change (which
would affect their positions, and therefore prices and returns), react to covariances
levels. Inserting those levels along with the previously considered predictors yield
significant results. Particularly noticeable was the lag level of silver (first line of
the table) which was a effective predictor for various metals and oil. Interestingly
however, others lags such as soybean or zinc would also enter significantly especially
for equities (SP500 and Dow Jones Industrials Index).

Essentially our study evidences three points: many commodities covariances
with the index influence marginally, if at all, other commodities returns; they are
the off-index commodities (as expected), the softs and exotic (coffee, cocoa) and
cotton; grains which usually carry higher weights in the index such as corn or wheat
interact more frequently with metals and energies, the major components of com-
modity indexes corroborating the intuitions carried over by the model.
The returns on those unsensitive commodities are usually also independant from
equities proxies such as the SP500 and theirs comovements with oil for example.

25Similarly the constant and the F stat were not included to save space.



This seems to be not only due to their nature (they do not enter industrial inputs
as energies and metals do hence would be less related with financial and industrial
proxies such as SP500 and DJ indexes) since palladium and titanium (which carry
no weight in majors commodity index, see Table 1 of Tang and Xiong (2010)’s)
as opposed to copper and zinc are less responsive as evidenced in our last table.
Further, comparing respondant grains such as corn or wheat (indexed) to roughrice
and oats lead to the same conclusion.
In our theorical framework we have also introduced the time dependant risk aver-
sion of institutional investors κµt and the parameter qt representing the relative
weight of commodities in financial institutions; a further step in completing our
empirical investigation would be to account for these two parameters. Considering
risk aversion, an entire study of its relative importance as predictor of excess re-
turns for both spot and futures commodities is the work Etula (2009) previously
mentioned.

Our main equations takes a very familiar form for someone introduced to the
(I)CAPM framework; somehow the usual covariance with the market portfolio is
in our framework the covariance with the commodity indexes. However, empirical
assessment of the CAPM model has shown mixed results until recently, essentially
due to technical restrictions according to Engle (2000).
In this paper, he shows that using the dynamic correlation set up to evaluate the
conditional covariances of assets with the market portfolio would yield promising
results, in particular in the standard equation:

Ri,t+1 = Ci +Acovt(RM,t+1, Ri,t+1) + εi,t+1

where RM,t+1 denotes the excess return on the market portfolio; two essential tests
of the ICAPM are passed: the positive common slopeA > 0 and the condition that
the intercepts are null Ci = 0.
The singularity of his success lies in the larger set of assets’ returns considered.
Assessing the CAPM model requires a forecast of the variance-covariance matrix
of assets returns, and could necessitate the estimation of very large covariance ma-
trices. Using DCC has clear computational advantages over multivariate GARCH
models for example, in that the number of parameters to be estimated in the cor-
relation process is independent of the number of series to be correlated. Therefore,
potentially very large correlation matrices can be estimated. In the present study
we have simply implemented estimation of pairwise rolling covariances, the DCC
framework would allow to measure conditional covariances of larger set of assets
and commodities and considerably enrich the robustness of our findings.
Further, a subsequent extension of the model and empirical analysis would consist
in systematically estimating the parameters ρ1

i,j,t and ρ2
i,j,t rather than infering a

relationship between ρi,j,t+1 and ρi,j,t.

5 Conclusion

Correlating prices and returns throught index investment could be an explana-
tion of how a tendency of rising prices for some commodity (due to a growing
demand and relative inelasticity of supply as for crude oil for instance) would have
impacted other commodities prices (respectively returns) such as observed in the



United States. This domino effect would reinforce itself since while the covariance
of commodity ci with the return on the index may influence commodity cj’ re-
turn and its covariance with the index, it might affect again the effective return
on commodity ci and so on. This model and its empirical assessment seizes this
mechanism.



6 Appendix

Table 1: regression for tin as spot commodity

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0094 0.0048 1.94 0.0541

gas -0.0079 0.0049 -1.60 0.1116
soybean 0.0109 0.0073 1.49 0.1381

tin 0.0165 0.0048 3.45 0.0007
lead -0.0152 0.0066 -2.30 0.0222
corn -0.0234 0.0077 -3.02 0.0028

copper -0.0130 0.0065 -1.99 0.0480
wheat 0.0075 0.0054 1.40 0.1619

6.1 Hedging via futures

Hedgers can be short or long. One takes a short hedge position in the futures mar-
ket when he expects to sell an asset he already owns and wants to guarantee the
price. Notice the asset we are trying to hedge may not be exactly the same as the
asset underlying the futures, and the time at which we sell the asset (which could
be random) might not be exactly be the same as the delivery date of the futures.

The basis is defined as the spot price of asset to be hedged - futures price of
asset being used for the hedge bt = St − Ft.If the asset being hedged and used for
the hedge are the same, then the basis will be zero at the expiration of the futures
contract. Consider a short hedger who will sell an asset at time T and who takes
a short futures position at t0 < T for delivery at some time t1 > T . Income at T
will be the price of asset at time T: ST plus the profit on futures position:

Ft0,t1 − FT,t1e−r(t1−T ) ≈ Ft0,t1 − FT,t1
26 if T − t1 is small, as is usually the case.
Total income is therefore ≈ ST + Ft0,t1 − FT,t1

= Ft0,t1 + (ST − FT,t1)

= Ft0,t1 + bT

The basis bT collects all the uncertain terms therefore represents all the risk. The
same formula for basis applies to a long hedge; if you consider an investor who
knows he will buy an asset at T. The total payment at T (approximately, as be-
fore) will be the spot price ST plus the loss on the future Ft0,t1 − FT,t1 .
Note that if bT were known at we would have a perfect hedge (because if bT is
known, then bT is fixed. This means that ST and FT must always change by equal
amounts, leaving income unchanged).
When bT is unknown at time t0 the uncertainty about the period T income, cap-
tured by the uncertainty about the value of bT , hence called basis risk.
In our model, we therefore assume investors hold mostly long positions, and there-
fore expect a payment Ft0,t1 + bT , the bT has no reason to be a sum of normal laws,
one may posit a different distribution.

26where r denotes some constant interest rate of returns



6.2 Complement on the cash-flow covariance matrix

The literature usually decomposes the cash flow shock to an asset with three com-
ponents: a market-wide cash-flow factor which will affect assets in all categories,
commodities futures and financial standard assets; a category specific cash-flow fac-
tor which affects assets in one category but will leave the other category unchanged
and finally a a idiosyncratic cash-flow shock. You could therefore write:

εi,t = λMfM,tλSfA,t +
√

(1− λ2
M − λ2

S)fi,t for i in A

and

εj,t = λMfM,tλY fC,t +
√

(1− λ2
M − λ2

S)fj,t for j in C

Where λM and λS are constant which control the relative importance of the three
components. You may further assume that each factor has unit variance and is or-
thogonal to the other factors. This implies the following structure for the matrix of

covariances of shocks: Σi,j
D ≡ cov(εi,t+1, εj,t+1) =


1, i = j
λ2
M + λ2

S = π for i,j in the same category
λ2
M = υ for i,j in different categories
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Table 2: Main series used

Series Starting date Code Use
Crude oil WTI 1986 CRUDOIL Spot
Wheat No.2,Soft Red Cts/Bu 1982 WHEATSF Spot
Soybeans No1 yellow 1979 SOYBEAN Spot
Cocoa-ICCO Daily Price US$/MT 1971 COCINUS Spot
Cotton New York Average Price 2002 COTNYAV Spot
Copper 1961 LCPCASH Spot
Corn 1979 CORNUS Spot
Aluminium 1961 LAHCASH Spot
Natural Gas, Henry Hub U$/MMBTU 1990 NATGHEN Spot
Nickel 1993 LNICASH Spot
Sugar Daily Price 1983 WSUGDLY Spot
Zinc 1993 LZZCASH Spot
Silver 1970 SLVCASH Spot
LME-Lead Cash U$/MT 1993 LEDCASH Spot
Tin 1961 TITNDIO Spot
Palladium 1987 PALLADM Spot
Electricity: Nordpool-Electricity Avg Reference 1990 NPXAVRF Spot
Soyameal USA 48% Protein $/MT 2001 SOYMUSA Spot
Rhodium: CIF NWE U$/Ounce - DS MID PRICE 1993 RHODNWE Spot
Oil, Brent 1 Mth Forward 1999 SG1MBRE Futures
S&P GSCI 1 Mth Fwd Soybeans Ind ER - 1995 SG1MSOE Futures
Kansas Wheat 2 Month ER 1990 DJUKW2E Futures
S&P GSCI 1 Month Fwd Cocoa Index - PRICE INDEX 1995 SG1MCCS Futures
S&P GSCI 1 Month Fwd Corn Index - ER 1995 SG1MCNE Futures
DJ UBS Tin 3 Mth Fwd TR - RETURN IND. (OFCL) 1996 DJUBTN3 Futures
DJ UBS Tin 3 Mth Fwd ER - 1995 SG1MKCE Futures
S&P GSCI 1 Month Fwd Cotton Index ER - 1995 SG1MCTE Futures
S&P GSCI 1 Month Fwd Nickel Index - PRICE INDEX 1995 SG1MIKS Futures
DJ UBS Lead 3 Mth Fwd ER - 1996 DJUBLD3 Futures
S&P GSCI 1 Month Fwd Aluminium Index ER - 1995 SG1MIAE Futures
SP500 PRICE INDEX 1970 S.PCOMP.PI. Financial index
DOW JONES INDUSTRIALS - PRICE INDEX 1970 DJINDUS.PI. Financial index
S&P GSCI Energy Excess Return - RETURN IND. (OFCL) 1980 GSENEXR Financial index
S&P GSCI Commodity Excess Return - RETURN IND. (OFCL) 1980 GSCIEXR Financial index
S&P GSCI Gold Excess Return - RETURN IND. (OFCL) 1980 GSGCEXR Financial index
S&P GSCI 2 Mnth Fwd Light ENE Spt - PRICE INDEX 1980 SPGSLPI Financial index
VIX Source: CBOE Historical series

US CPI - ALL URBAN: ALL ITEMS SADJ USCONSPCE
US TREASURY BILL RATE - 3 MONTH (EP) USGBILL3
SHFE-ALUMINIUM CONT. INDEX - SETT. PRICE - CH/TE SHACS04 China DCC
ZCE-COTTON 1 CONTINUOUS - SETT. PRICE - CH/TE ZCTCS04 China
SHFE-COPPER CONT. INDEX - SETT. PRICE - CH/TE SCUCS04 China
SHFE-FUEL OIL CONT. INDEX - SETT. PRICE - CH/TE SFUCS04 China
DCE-NO.1 SOYBEAN CONT. INDEX - SETT. PRICE - CH/TE DA.CS04 China
ZCE-HARD WHITE WHEAT CONT.INDEX - SETT. PRICE - CH/TE ZWTCS04 China
ZCE-SUGAR CONTINUOUS - SETT. PRICE - CH/TE ZSACS04 China
Diesel Brazil North Cons. BRL/LTR ANPDCNT Brazil DCC
Natural Gas Brazil Cons. BRL/CBM ANPCCBR Brazil
Fed Cattle Triangulo Mneiro BRL/15KG FEDCABR Brazil
Gold-Brazil Adjusted BM&F (250g) BR/G GOLDBRA Brazil
Sugar Amour Crystal Daily BR CASUCBR Brazil
Soybean Grower Exp Triangulo Mneiro SBGTMBR Brazil
Wheat (grower) Soft Brazil BRL/60KG WHGPABR Brazil
Corn Wholesale SudoesteBRL/60KG CORWSBR Brazil



Figure 6: Prices’ evolutions over 2004-2013 in Brazil

Wheat price was rescaled- divided by three



Figure 7: Prices’ evolutions over 2004-2013 in the US

Wheat and Gold price were rescaled- divided by two and five respectively



Figure 8: Prices’ evolutions over 1993-2013 in China



Figure 9: DCC over 1993-2013 in China



DCC in the United States 2000-2013

Figure 10: DCC of wheat with aluminium and copper

Figure 11: DCC of soybeans with wheat, aluminium and copper

Figure 12: DCC of cotton with wheat, aluminium and copper

Figure 13: DCC of oil with aluminium, copper and cotton



Figure 14: DCC in Brazil and US over 2004-2013



Figure 15: DCC in Brazil and US over 2004-2013



Figure 16: DCC in Brazil and US over 2004-2013



Table 3: Regression Results for Commodity Futures. Full sample: 1990-2013

Note:except if differently mentioned all commodities ci presented below refer to the covariance covt(ci, r
I
t ) where rIt is the excess return on the GS commodity index

crude oil soybean copper aluminium tin zinc corn Dow Jones SP500

(1) (2) (3) (4) (5) (6) (7) (8) (9)

tin 0.003 0.012∗ 0.019∗∗ 0.015∗∗ 0.019∗∗ 0.002 −0.003 0.011∗∗∗ 0.016∗∗∗

(0.009) (0.007) (0.008) (0.006) (0.008) (0.008) (0.008) (0.004) (0.004)

gas 0.019∗∗ 0.010 0.012 0.017∗∗∗ 0.015∗∗

(0.008) (0.006) (0.008) (0.006) (0.007)

(aluminium, energy) 0.019∗ 0.013
(0.010) (0.010)

(SP500, gold) 0.010∗ 0.012∗

(0.006) (0.006)

copper 0.034∗∗∗ −0.013 −0.015∗

(0.012) (0.011) (0.008)

(gold, energy) −0.017∗∗∗ −0.021∗∗∗ −0.015∗∗∗ −0.025∗∗∗

(0.007) (0.007) (0.005) (0.008)

(soybean, rIt ) 0.009 0.011
(0.007) (0.009)

(SP500, rIt ) 0.039∗∗∗ 0.012 −0.010∗ 0.0002
(0.013) (0.011) (0.005) (0.003)

(crude oil, rIt ) −0.024∗∗ −0.016∗∗ −0.012 −0.003 −0.002 −0.008 0.006
(0.010) (0.007) (0.009) (0.007) (0.009) (0.010) (0.004)

zinc 0.015 0.012∗

(0.011) (0.007)

(SP500, energy) −0.037∗∗∗ −0.023∗∗ −0.017∗∗ −0.011∗

(0.013) (0.011) (0.007) (0.007)

lead −0.015∗ −0.048∗∗∗ −0.026∗∗∗ −0.017∗∗∗ −0.018∗∗∗

(0.009) (0.011) (0.010) (0.004) (0.004)

corn −0.018∗∗∗ −0.039∗∗∗ −0.019∗∗∗ −0.007∗ −0.007∗∗

(0.006) (0.009) (0.007) (0.004) (0.003)

wheat 0.008 0.008 0.008 0.010∗∗ 0.016∗∗ 0.011∗ 0.011∗ 0.0001
(0.006) (0.005) (0.006) (0.005) (0.006) (0.006) (0.006) (0.003)

Constant 0.017∗∗ 0.012∗∗ 0.014∗∗ 0.001 0.013∗∗ 0.004 0.001 0.003 0.005∗

(0.007) (0.006) (0.006) (0.005) (0.006) (0.006) (0.007) (0.003) (0.003)

Observations 166 166 166 166 166 199 166 166 199

R2 0.148 0.106 0.156 0.117 0.198 0.116 0.098 0.137 0.119

Adjusted R2 0.105 0.060 0.113 0.078 0.152 0.078 0.070 0.111 0.100
Residual Std. Error 0.086(df = 157) 0.072(df = 157) 0.081(df = 157) 0.066(df = 158) 0.079(df = 156) 0.082(df = 190) 0.084(df = 160) 0.042(df = 160) 0.044(df = 194)
F statistic 3.421∗∗∗(df = 8; 157) 2.318∗∗(df = 8; 157) 3.632∗∗∗(df = 8; 157) 3.002∗∗∗(df = 7; 158) 4.284∗∗∗(df = 9; 156) 3.103∗∗∗(df = 8; 190) 3.490∗∗∗(df = 5; 160) 5.101∗∗∗(df = 5; 160) 6.522∗∗∗(df = 4; 194)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01





Table 4: Regression Results 2003-2013

Note:except if differently mentioned all commodities ci presented below refer to the covariance covt(ci, r
I
t ) where rIt is the excess return on the GS commodity index

crude oil soybean copper aluminium tin zinc corn Dow Jones SP500
(1) (2) (3) (4) (5) (6) (7) (8) (9)

(aluminium, energy) 0.015
(0.015)

gas 0.012 0.019∗ 0.026∗∗ 0.023∗∗

(0.009) (0.011) (0.010) (0.010)

tin 0.016 0.026∗ 0.019∗ 0.029∗∗ 0.001 −0.005 0.013∗∗ 0.019∗∗∗

(0.011) (0.013) (0.010) (0.013) (0.013) (0.011) (0.005) (0.005)

(SP500, gold) 0.014 0.017
(0.009) (0.011)

copper 0.049∗∗∗ −0.020 −0.022∗

(0.018) (0.017) (0.012)

(gold, energy) −0.024∗∗ −0.031∗∗∗ −0.021∗∗∗ −0.035∗∗∗

(0.010) (0.010) (0.008) (0.013)

soybeans 0.016∗ 0.012
(0.009) (0.013)

(SP500,rIt ) 0.061∗∗∗ 0.018 −0.015∗ 0.001
(0.017) (0.016) (0.008) (0.004)

(crude oil,rIt ) 0.008 −0.023∗∗ −0.016 −0.001 −0.001 −0.007 0.007
(0.009) (0.010) (0.013) (0.010) (0.014) (0.014) (0.005)

zinc 0.020 0.015
(0.017) (0.012)

(SP500, energy) −0.054∗∗∗ −0.034∗∗ −0.026∗∗ −0.015
(0.018) (0.016) (0.011) (0.011)

lead −0.020∗∗ −0.062∗∗∗ −0.030∗∗ −0.021∗∗∗ −0.024∗∗∗

(0.009) (0.017) (0.014) (0.005) (0.005)

corn −0.025∗∗∗ −0.057∗∗∗ −0.027∗∗ −0.008∗ −0.007∗

(0.009) (0.013) (0.012) (0.004) (0.004)

wheat 0.018∗∗ 0.011 0.013 0.015∗ 0.026∗∗∗ 0.018∗ 0.018∗∗ −0.002
(0.008) (0.008) (0.009) (0.008) (0.010) (0.011) (0.009) (0.004)

Constant 0.013∗ 0.013∗ 0.021∗∗ 0.003 0.019∗∗ 0.010 0.005 0.005 0.005
(0.008) (0.007) (0.008) (0.007) (0.008) (0.009) (0.008) (0.004) (0.004)

Observations 119 119 119 119 119 119 119 119 119

R2 0.147 0.145 0.174 0.140 0.251 0.152 0.153 0.206 0.206

Adjusted R2 0.109 0.083 0.114 0.086 0.189 0.090 0.115 0.170 0.178
Residual Std. Error 0.085(df = 113) 0.076(df = 110) 0.092(df = 110) 0.074(df = 111) 0.087(df = 109) 0.097(df = 110) 0.089(df = 113) 0.038(df = 113) 0.040(df = 114)
F statistic 3.887∗∗∗(df = 5; 113) 2.335∗∗(df = 8; 110) 2.893∗∗∗(df = 8; 110) 2.591∗∗(df = 7; 111) 4.049∗∗∗(df = 9; 109) 2.461∗∗(df = 8; 110) 4.081∗∗∗(df = 5; 113) 5.848∗∗∗(df = 5; 113) 7.392∗∗∗(df = 4; 114)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 5: Regression Results with control variables

crude oil soybean copper aluminium tin zinc corn Dow Jones SP500

US CPI(lag1) −0.179∗∗∗ −0.077∗∗ −0.005 −0.012 0.001 −0.006 0.013 0.0008 −0.008
(0.056) (0.032) (0.015) (0.010) (0.012) (0.012) (0.013) (0.006) (0.006)

OI oil 0.074∗∗∗

(0.027)
OI soybeans 0.039∗∗

(0.016)
OI copper 0.017∗

(0.009)
VIX(lag15days) −0.021∗∗∗ −0.005 −0.018∗∗∗ −0.021∗∗∗ −0.014∗∗ −0.023∗∗∗ −0.011 −0.006∗ −0.009∗∗

(0.008) (0.007) (0.007) (0.005) (0.006) (0.006) (0.007) (0.003) (0.003)
Interest rate −0.034∗∗ −0.015 −0.003 −0.009 −0.007 −0.006 −0.001 0.003 −0.004

(0.014) (0.010) (0.010) (0.007) (0.009) (0.009) (0.010) (0.005) (0.005)

tin 0.003 0.014∗ 0.010 0.015∗∗ 0.018∗∗ 0.001 −0.004 0.011∗∗∗ 0.016∗∗∗

(0.010) (0.008) (0.008) (0.006) (0.008) (0.008) (0.008) (0.004) (0.004)

gas 0.019∗∗ 0.006 0.010 0.014∗∗ 0.013∗

(0.009) (0.006) (0.008) (0.006) (0.008)

(aluminium,energy) 0.016 0.013
(0.010) (0.010)

(SP500, gold) 0.010 0.013∗∗

(0.006) (0.006)

copper 0.023∗∗ −0.015 −0.014∗

(0.010) (0.012) (0.008)

(gold, energy) −0.019∗∗ −0.025∗∗∗ −0.016∗∗∗ −0.026∗∗∗

(0.007) (0.007) (0.005) (0.007)

soybeans 0.007 0.009
(0.007) (0.009)

(SP500, rIt ) 0.046∗∗∗ 0.013 −0.010∗∗ 0.0002
(0.014) (0.012) (0.005) (0.003)

(crude oil, rIt ) −0.029∗∗∗ −0.018∗∗ −0.003 −0.001 −0.008 0.006
(0.010) (0.008) (0.006) (0.009) (0.010) (0.004)

(SP500, energy) −0.043∗∗∗ −0.021 −0.015∗∗ −0.011∗

(0.014) (0.012) (0.007) (0.006)

zinc 0.021∗∗ 0.015∗∗

(0.011) (0.007)

lead −0.004 −0.038∗∗∗ −0.022∗∗ −0.017∗∗∗ −0.018∗∗∗

(0.010) (0.011) (0.010) (0.004) (0.004)

corn −0.020∗∗∗ −0.039∗∗∗ −0.021∗∗∗ −0.007∗ −0.007∗∗

(0.006) (0.009) (0.007) (0.004) (0.003)

wheat 0.006 0.006 0.010∗ 0.011∗∗ 0.016∗∗ 0.012∗ 0.011∗ 0.0001
(0.007) (0.006) (0.006) (0.005) (0.006) (0.006) (0.006) (0.003)

Constant 0.083∗∗∗ 0.037∗∗∗ 0.021∗∗∗ 0.009 0.012 0.011 −0.005 0.003 0.005∗

(0.020) (0.013) (0.008) (0.007) (0.009) (0.007) (0.010) (0.003) (0.003)

Observations 128 128 147 162 162 195 162 166 199

R2 0.289 0.172 0.245 0.216 0.225 0.184 0.123 0.137 0.119

Adjusted R2 0.215 0.086 0.183 0.164 0.162 0.135 0.077 0.111 0.100
Residual Std. Error 0.087(df = 115) 0.074(df = 115) 0.080(df = 135) 0.063(df = 151) 0.079(df = 149) 0.079(df = 183) 0.084(df = 153) 0.042(df = 160) 0.044(df = 194)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 6: Regression Results with control and lags variables

crude oil soybean copper aluminium tin zinc corn Dow Jones SP500

(1) (2) (3) (4) (5) (6) (7) (8) (9)
lag(silver) −0.015∗ −0.025∗∗ −0.015∗∗ −0.016∗ −0.016∗

(0.009) (0.010) (0.006) (0.009) (0.009)
oil OI 0.071∗∗

(0.029)
lag(lead) 0.020∗∗∗

(0.006)
gas 0.018∗∗ 0.001 0.010∗

(0.008) (0.006) (0.006)
(aluminium,energy) 0.017∗

(0.009)
lag(aluminium) −0.035∗∗

(0.015)
lag(soybean) −0.006∗

(0.003)
lag(zinc) −0.013∗∗

(0.007)
lag(copper) 0.045∗∗∗ 0.013 0.033∗∗∗ 0.012∗∗∗ 0.022∗∗∗

(0.015) (0.009) (0.008) (0.004) (0.007)
copperS −0.111∗

(0.060)
copperR −0.115∗

(0.064)
copper OI 0.019∗

(0.010)
corn −0.035∗∗∗ −0.016∗∗ −0.020∗∗∗ −0.031∗∗∗ −0.023∗∗∗ −0.008∗∗ −0.006∗

(0.009) (0.008) (0.006) (0.007) (0.007) (0.004) (0.003)
lead −0.027∗∗ −0.025∗∗∗ −0.042∗∗∗ −0.013∗∗∗ −0.015∗∗∗

(0.010) (0.008) (0.010) (0.004) (0.004)
US CPI −0.150∗∗ −0.123∗∗∗ 0.036 −0.005 0.007 −0.016 0.013 −0.008 −0.023∗∗∗

(0.063) (0.040) (0.029) (0.012) (0.015) (0.015) (0.012) (0.007) (0.007)
soy OI 0.056∗∗∗

(0.019)
VIX −0.025∗∗∗ −0.003 −0.026∗∗∗ −0.026∗∗∗ −0.018∗∗∗ −0.032∗∗∗ −0.010 −0.009∗∗ −0.013∗∗∗

(0.008) (0.007) (0.009) (0.005) (0.007) (0.007) (0.006) (0.004) (0.003)
interest rate −0.026∗ −0.019∗ −0.005 −0.002 −0.006 −0.011 −0.0002 −0.008 −0.014∗∗

(0.015) (0.010) (0.012) (0.008) (0.010) (0.010) (0.009) (0.005) (0.006)
silver −0.008

(0.007)
copper −0.016∗∗

(0.007)
tin 0.015∗ 0.015∗∗ 0.019∗∗ −0.002 0.011∗∗∗ 0.016∗∗∗

(0.008) (0.006) (0.009) (0.007) (0.004) (0.004)
(SP500, gold) 0.013∗∗ −0.003 0.009

(0.006) (0.007) (0.006)
(gold,energy) −0.018∗∗∗ −0.017∗∗ −0.019∗∗∗ −0.027∗∗∗

(0.007) (0.008) (0.005) (0.007)
soybeans 0.030∗∗∗

(0.009)

(SP, rIt ) 0.047∗∗∗ −0.010 −0.004 −0.011∗∗ 0.0004 −0.004 −0.001
(0.014) (0.006) (0.007) (0.005) (0.006) (0.006) (0.003)

(crude oil,rIt ) −0.033∗∗∗ −0.017∗∗ 0.006 0.003 0.003 0.014∗ 0.006
(0.010) (0.007) (0.009) (0.006) (0.008) (0.008) (0.004)

(SP, energy) −0.045∗∗∗

(0.014)
zinc 0.029∗∗ 0.048∗∗∗

(0.011) (0.010)
wheat 0.004 0.007 0.012∗ 0.012∗∗ 0.016∗∗ 0.017∗∗∗ 0.012∗∗ 0.0001

(0.007) (0.006) (0.007) (0.005) (0.006) (0.006) (0.005) (0.003)

Observations 128 128 128 162 162 162 195 162 195

R2 0.331 0.269 0.331 0.283 0.217 0.330 0.122 0.210 0.211

Adjusted R2 0.255 0.178 0.227 0.220 0.159 0.271 0.084 0.158 0.173
Residual Std. Error 0.085(df = 114) 0.070(df = 113) 0.081(df = 110) 0.061(df = 148) 0.079(df = 150) 0.077(df = 148) 0.080(df = 186) 0.041(df = 151) 0.043(df = 185)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 7: Regression Results Spot

Note: level refers to the covt introduced in level rather than in changes

crude oil crude oil (level) copper copper (level) rhodium zinc cotton cocoa soybeans

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(aluminium, energy) 0.017∗∗

(0.008)
tin −0.008 −0.004

(0.007) (0.005)
rhodium −0.010

(0.007)
cocoa −0.011

(0.007)

(SP500, rIt ) 0.036∗∗∗ 0.002 0.007
(0.012) (0.005) (0.009)

corn −0.003 −0.021∗∗∗

(0.005) (0.008)
soybeans 0.014∗∗ 0.008∗ 0.023∗∗∗

(0.006) (0.005) (0.007)
copper 0.014∗ −0.030∗∗∗

(0.008) (0.007)

(crude oil,rIt ) −0.007 −0.005 −0.018∗ −0.014∗∗

(0.008) (0.007) (0.010) (0.005)
zinc 0.021∗∗

(0.009)
(SP500, energy) −0.051∗∗∗ −0.015∗∗ −0.021∗∗∗ −0.002 −0.016

(0.013) (0.007) (0.007) (0.007) (0.010)
silver 0.022∗∗

(0.010)
lead −0.021∗∗∗ −0.011 −0.018∗∗ −0.009∗

(0.007) (0.007) (0.008) (0.005)
(gold, energy) −0.012∗∗ −0.029∗∗∗ −0.007 −0.009∗

(0.006) (0.008) (0.006) (0.005)
wheat 0.005 0.004 0.002

(0.006) (0.006) (0.006)
silver −0.011

(0.007)
wheat 0.014∗∗ 0.018

(0.007) (0.011)
sugar −0.009∗∗ −0.023∗∗

(0.004) (0.010)
rhodium 0.021∗

(0.012)
zinc 0.003

(0.011)

(SP500,rIt ) 0.011∗ 0.006 −0.0004
(0.006) (0.004) (0.012)

(crude oil,rIt ) 0.008 −0.008
(0.006) (0.014)

corn −0.023∗∗∗ −0.013∗∗∗ −0.042∗∗∗

(0.007) (0.004) (0.010)
(SP500, gold) 0.015∗∗ 0.017∗∗∗ 0.011∗∗

(0.007) (0.005) (0.005)
Constant 0.013∗ 0.011∗∗ 0.007 0.007∗ 0.017∗ 0.010 0.012 0.005 0.007

(0.006) (0.005) (0.005) (0.004) (0.010) (0.007) (0.008) (0.005) (0.005)

Observations 214 324 214 360 231 130 135 214 214

R2 0.128 0.066 0.055 0.048 0.100 0.182 0.136 0.092 0.114

Adjusted R2 0.094 0.051 0.018 0.040 0.071 0.128 0.116 0.066 0.075
Residual Std. Error 0.094(df = 205) 0.097(df = 318) 0.080(df = 205) 0.077(df = 356) 0.143(df = 223) 0.085(df = 121) 0.091(df = 131) 0.074(df = 207) 0.072(df = 204)
F statistic 3.766∗∗∗(df = 8; 205) 4.480∗∗∗(df = 5; 318) 1.484(df = 8; 205) 5.948∗∗∗(df = 3; 356) 3.526∗∗∗(df = 7; 223) 3.364∗∗∗(df = 8; 121) 6.860∗∗∗(df = 3; 131) 3.496∗∗∗(df = 6; 207) 2.919∗∗∗(df = 9; 204)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Note: All first six predictors are covariances in level, while after they are in changes as usually specified.

Table 8: Regression Results Spot: counterfactual

palladium level palladium soy meal titanium level titanium sugar gas electricity electricity 2
(1) (2) (3) (4) (5) (6) (7) (8) (9)

silver(level) −0.003
(0.007)

wheat 0.006
(0.007)

sugar −0.001
(0.002)

(SP500,rIt ) 0.010 0.002
(0.006) (0.002)

(crude oil,rIt ) −0.004
(0.006)

corn(level) −0.016∗∗ −0.0001
(0.007) (0.002)

(aluminium,energy) −0.015 −0.019 0.041
(0.010) (0.016) (0.028)

corn −0.019∗ 0.001 0.026 0.018
(0.011) (0.002) (0.032) (0.020)

tin −0.003 0.004 −0.007 0.008 0.010
(0.007) (0.007) (0.013) (0.021) (0.020)

rhodium 0.019∗∗

(0.008)
cocoa 0.008

(0.008)
(gold,SP500) 0.020∗∗ 0.001 −0.020

(0.008) (0.006) (0.020)
copper 0.001 −0.033

(0.002) (0.031)

(SP500,energy) 0.001 0.011
(0.002) (0.023)

(gold, energy) −0.005 0.002 −0.001 0.050∗∗

(0.007) (0.002) (0.007) (0.022)

soybean 0.018∗ −0.009 −0.010
(0.010) (0.006) (0.031)

gas −0.040∗∗∗ 0.022 0.015
(0.012) (0.021) (0.019)

(SP500,rIt ) 0.0002 −0.003 −0.003 0.014
(0.008) (0.009) (0.007) (0.013)

(crude oil,rIt ) −0.022∗∗ −0.026∗∗∗ −0.001 0.006 −0.013
(0.009) (0.009) (0.002) (0.015) (0.026)

sugar −0.003∗

(0.002)

lead 0.012 −0.0002 −0.007 0.003 −0.007
(0.009) (0.002) (0.006) (0.014) (0.026)

wheat −0.0005 −0.003 −0.001 −0.007 −0.018 −0.022
(0.007) (0.008) (0.002) (0.011) (0.022) (0.022)

Constant 0.011∗∗ 0.013∗ 0.012 0.0002 0.001 0.006 0.019 0.041∗∗ 0.041∗∗

(0.005) (0.007) (0.008) (0.002) (0.002) (0.006) (0.012) (0.020) (0.020)

Observations 316 214 143 280 214 214 214 214 214

R2 0.041 0.053 0.158 0.009 0.030 0.027 0.074 0.030 0.039

Adjusted R2 0.026 0.021 0.108 −0.001 −0.008 −0.001 0.042 −0.013 0.007
Residual Std. Error 0.095(df = 310) 0.107(df = 206) 0.092(df = 134) 0.028(df = 276) 0.024(df = 205) 0.093(df = 207) 0.179(df = 206) 0.294(df = 204) 0.291(df = 206)
F statistic 2.668∗∗(df = 5; 310) 1.639(df = 7; 206) 3.147∗∗∗(df = 8; 134) 0.880(df = 3; 276) 0.795(df = 8; 205) 0.953(df = 6; 207) 2.335∗∗(df = 7; 206) 0.693(df = 9; 204) 1.209(df = 7; 206)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01


