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Abstract. The goal of this paper is to provide a complete and refined study of the L-functions

L(π,Std, s) for certain non-generic cuspidal automorphic representations π of G2(A). For a cuspidal

automorphic representation π of G2(A) that corresponds to a modular form ϕ of level one and of

even weight on G2, we explicitly define the completed standard L-function, Λ(π,Std, s). Assuming

that a certain Fourier coefficient of ϕ is nonzero, we prove the functional equation Λ(π,Std, s) =

Λ(π,Std, 1 − s). Our proof proceeds via a careful analysis of a Rankin-Selberg integral that is due

to the work of Gurevich and Segal.
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1. Introduction

1.1. History. Let G2 denote the split exceptional linear algebraic group over Q of Dynkin type G2,

and suppose that π is a cuspidal automorphic representation of G2(A). The study of L-functions

associated to such representations has a substantial history. Piatetski–Shapiro, Rallis and Schiff-

mann [13] were the first to study such an L-function by constructing a Rankin-Selberg integral for

the tensor product L-function of π and a cuspidal automorphic representation on GL2 . Their result

applies to the π that are globally generic, that is, those π that admit a nonvanishing Whittaker co-

efficient. Later Ginzburg [5] proved that for generic π, the partial standard L-function LS(π,Std, s)
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has a meromorphic continuation with at most a simple pole by constructing an appropriate Rankin-

Selberg integral.

For cuspidal representations π that are not necessarily generic, the corresponding Rankin-Selberg

integrals were constructed in the works of Ginzburg and Hundley [6], Gurevich and Segal [10] and

then Segal [16]. It was proven in [16] that the partial standard L-function of such a representation

π admits a meromorphic continuation to the complex plane. However, bounding the poles of the

L-function LS(π,Std, s) in a left half-plane, and proving a functional equation relating its values

at s to its values at (1− s) are difficult problems. This is, in part, due to the difficulty of analyzing

local L-functions and local zeta integrals at the ramified finite places and at the archimedean place.

1.2. Statements of results. Modular forms on G2 were introduced by Gan, Gross and Savin in

[4]. Briefly, these are automorphic forms on G2(A) that correspond to representations in the form

π = πf ⊗ π∞ where πf denotes a representation that is unramified at every finite place and π∞ is

a certain quaternionic discrete series representation of G2(R). Let K denote a maximal compact

subgroup of G2(R), so that K ' (SU(2)×SU(2))/{±1} with the first copy of SU(2) being the long

root and the second being the short root. Then for ` ≥ 2, there is a discrete series representation

π`,∞ of G2(R) whose minimal K-type is Sym2`(C2)�1 as a representation of SU(2)× SU(2). Such

representations π`,∞ are not generic.

Let ` ≥ 2 be an even integer. We define the archimedean L-factor as

L∞(π`,∞, s) = ΓC(s+ `− 1)ΓC(s+ `)ΓC(s+ 2`− 1)ΓR(s+ 1).

Here

ΓR(s) = π−s/2Γ(s/2) and ΓC(s) = 2(2π)−sΓ(s),

where Γ is the usual gamma function. It is worthwhile to point out that Gross and Savin [9, p. 168]

had previously defined the archimedean L-factor for representations of the compact group G c
2 (R).

We easily see that our archimedean L-factor agrees with theirs by setting k1 = 0 and k2 = `− 2 in

their notation.

For such representations π = πf⊗π`,∞, an L-function L(π,Std, s) is defined. Then the completed

L-function is given by

Λ(π,Std, s) = L∞(π`,∞, s)L(π,Std, s).

Our main results concern these L-functions.

Further, we recall that such a representation π has an associated cuspidal modular form ϕπ on

G2 that has weight ` and level one. It is proved in [4] that the Fourier coefficients of such a modular

form ϕπ depend on a cubic ring T such that T ⊗R ' R×R×R. We thus denote them by aϕπ(T ).

Our first result is as follows.

Theorem 1.1. Suppose that ϕ is a level one cuspidal modular form on G2 of positive even weight `

that generates the cuspidal automorphic representation π. Further, assume that the Fourier coeffi-

cient of ϕ corresponding to the split cubic ring Z× Z× Z is nonzero. Then

Λ(π,Std, s) = Λ(π,Std, 1− s)

for all s ∈ C.
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It should be noted that at present, we do not know whether there exists such a level one, even

weight cuspidal modular form ϕ with a nonzero Z×Z×Z Fourier coefficient. However, it is certainly

expected (by analogy with Siegel modular forms of genus two) that these modular forms exist in

abundance.

The proof of Theorem 1.1 is based on a refined analysis of the Rankin-Selberg integral in [10].

Moreover, a Dirichlet series for the L-function L(π,Std, s) follows from the proof of Theorem 1.1.

We also have

Corollary 1.2. Let the assumptions be as in Theorem 1.1, and let aϕ(T ) denote the Fourier coefficient

of ϕ corresponding to the cubic ring T that satisfies T ⊗ R ' R× R× R. Then∑
T⊆Z3,n≥1

aϕ(Z + nT )

[Z3 : T ]s−`+1ns
= aϕ(Z3)

L(π,Std, s− 2`+ 1)

ζ(s− 2`+ 2)2ζ(2s− 4`+ 2)
.

Here the sum is over the subrings T of Z× Z× Z and integers n ≥ 1.

In [14], Pollack gave a streamlined account of the Rankin-Selberg integrals in [10] and [16]

whereby simplifying some of their computations. He used his analysis of the Rankin-Selberg integral

to provide a Dirichlet series representation for the standard L-function of modular forms on G2

outside of the primes p = 2 and p = 3, and began some calculations of the archimedean zeta integral

associated to the global Rankin-Selberg convolution. Thus, Theorem 1.1 and Corollary 1.2 bring

the work that began in [14] to completion.

Observe that by studying the archimedean factor L∞(π`,∞, s), one can verify that the integers

1, 3, 5, . . . , ` − 1 are critical for L(π,Std, s) in the sense of Deligne, that is, both of the values

L∞(π`,∞, s) and L∞(π`,∞, 1 − s) are finite at these integers. It would be extremely interesting to

obtain a special value result in the direction of Deligne’s conjecture for these L-values. While such

a result is beyond the reach of our methods, we can obtain a result on what can be considered the

most basic special value, namely, a result on the trivial zeros of the L-function L(π,Std, s). This

is a direct corollary of the functional equation of the completed L-function. In more detail, the

completed L-function Λ(π,Std, s) is finite and nonzero for Re(s) � 0, and also for Re(s) � 0 by

using the functional equation. However, the archimedean factor L∞(π`,∞, s) has poles at negative

integers of sufficiently large absolute value. These poles are compensated for by the zeros of the

standard L-function. We therefore deduce the following from Theorem 1.1.

Corollary 1.3. Let the assumptions be as in Theorem 1.1. Then L(π,Std, s) vanishes to order 3 at

negative even integers of sufficiently large absolute value, and vanishes to order 4 at negative odd

integers of sufficiently large absolute value.

1.3. Outline of the proof of Theorem 1.1. As mentioned, our proof of Theorem 1.1 is based on a

refined analysis of the Rankin-Selberg integral in [10] and is a continuation of the work in [14]. Let

G denote the split group Spin(8). If ϕ is a modular form on G2 of weight `, then by definition, ϕ is

a V`-valued automorphic function on G2(A), where V` = Sym2`(C2) (see [14] for a more detailed

account on modular forms on G2). For a normalized Eisenstein series E∗` (g, s) on G(A) that takes
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values in V`, we will consider the Rankin-Selberg integral

I`(ϕ, s) =

∫
G2(Q)\G2(A)

{ϕ(g), E∗` (g, s)}K dg.

Here {·, ·}K is a K-equivariant pairing V`⊗V` → C. In order to obtain Theorem 1.1, we will prove

that

I`(ϕ, s) = aϕ(Z3)Λ(π,Std, s− 2)

up to a nonzero constant, and that the Eisenstein series E∗` (g, s) satisfies the functional equation

E∗` (g, s) = E∗` (g, 5− s).

For the proof of the first statement, we will analyze local integrals Ip(s) for finite primes p which

will be defined in (3.4) and an archimedean integral I∗(s; `) defined in (8.1), and prove that these

local integrals are equal to the corresponding local L-factors up to some simple factors. For p ≥ 5,

the local integrals Ip(s) were analyzed in [10]. To carry out the computation of these integrals

for p = 2, 3, we follow a method in [14] and use some results on cubic rings. The analysis of the

integral I∗(s; `) was begun in [14], where the computation was reduced to that of an integral J ′(s)

over the space of real binary cubics of a general form that was previously considered by Shintani

[19]. We will evaluate the integral J ′(s) explicitly in terms of the gamma function, thereby proving

that I∗(s; `) = L(π`,∞, s− 2) up to a nonzero constant.

To prove the functional equation for E∗` (g, s), we will use Langlands’ functional equation for the

Eisenstein series. Since our Eisenstein series E∗` (g, s) is not spherical at the archimedean place, we

will make a careful analysis of certain archimedean intertwining operators.

Remark. The methods in this paper are somewhat flexible but also have some limitations. For

instance, in terms of the calculations of the unramified integrals at the finite places, our restriction

to Q is simply for convenience. These calculations would follow just as easily over other ground

fields. However, where we really use our assumption that Q is the ground field is in the archimedean

calculation. Indeed, we do not expect that the calculations in Sections 7 and 8 will have close

analogues for other number fields.

Also, notice that we have several assumptions on our modular forms on G2. Firstly, we only

consider modular forms of level one. This allows us to do an unramified computation at every finite

place. Without this assumption, it would also be difficult to obtain a precise functional equation

for an Eisenstein series that is used in the Rankin-Selberg integral. We also restrict our discussion

to quaternionic modular forms due to reasons that can be considered to be purely archimedean. For

such modular forms, we can define a completed L-function, prove its relation to the global Rankin-

Selberg convolution, and prove its functional equation. This archimedean assumption does not

make the unramified computations any easier or different. However, by working with quaternionic

modular forms, we are able to compute the archimedean integral as in Section 8. We would not

expect to be able to do an analogous computation for non-spherical, non-quaternionic automorphic

forms.

Finally, note that we only consider the Z×Z×Z Fourier coefficient of quaternionic modular forms.

This assumption is used to make the unramified calculation as simple as possible at every finite
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place. In particular, replacing Z × Z × Z with another maximal totally real cubic ring, we would

still expect to be able to do the resulting archimedean calculation. Importantly, Theorem 1.1 and

its corollaries require that our modular form supports a nonzero Fourier coefficient corresponding

to the split cubic ring Z× Z× Z.

1.4. Organization of the paper. We now give an outline of our paper. In Section 2, we setup some

notation. In Section 3, we give an overview of the Rankin-Selberg integral and present our strategy

to calculate the non-archimedean L-factor. In Section 4, we prove some results that relate some

cubic rings to some binary cubic forms. In Section 5, we compute the Fourier coefficient of the

so-called approximate basic function. In Section 6, we complete the computation for the case of

unramified primes. This involves computing the function Φp,χ(t, g), which is defined in (3.5) and is

related to the inducing section of the Eisenstein series, and some calculations with certain Hecke

operators. In Section 7, we prove the functional equation of the Eisenstein series E∗` (g, s), and then

we compute the archimedean zeta integral I∗(s; `) in Section 8. In Section 9, we combine our work

and prove our main results.

1.5. Acknowledgments. This paper is an outgrowth of the workshop Rethinking Number Theory:

2020 that was organized by Heidi Goodson, Christelle Vincent and Mckenzie West. The authors

would like to extend their sincere thanks to the organizers of this workshop, without which this

paper would not have been written. We also thank the anonymous referee for reading the manuscript

very carefully and providing many valuable comments and suggestions.

2. Setups

2.1. Octonions and reductive groups. It is well-known that G2 is defined as the automorphism

group of an octonion algebra. In this section, we use the split octonions algebra Θ in the Zorn

model (see [14, Section 2.1]) to view G2 as a subgroup of Spin(Θ). We will review some of the

notation used in [14]. The representation V3 of SL3 and its dual representation V ∨3 will be fixed.

The space V3 has a standard basis {e1, e2, e3} and V ∨3 has the dual basis {e∗1, e∗2, e∗3}. Note that for

each j = 1, 2, 3, we make the identifications

ej ∈ V3 ↔
(

0 ej

0 0

)
∈ Θ and e∗j ∈ V ∨3 ↔

(
0 0

e∗j 0

)
∈ Θ.

Using the quadratic norm on Θ, we can define the group G′ = SO(Θ). Now, let G denote the

algebraic group Spin(Θ) defined as

G =
{

(g1, g2, g3) ∈ SO(Θ)3 : (g1x1, g2x2, g3x3) = (x1, x2, x3) for all x1, x2, x3 ∈ Θ
}
,

where (x1, x2, x3) = trΘ(x1(x2x3)). We fix a map proj1 : G → G′ as (g1, g2, g3) 7→ g1. This map

induces an isomorphism on Lie algebras.

Let Θ0 be the standard maximal lattice in the Zorn model. Then Θ0 consists of the matrices

( a vφ d ) where a, d ∈ Z, v is in the Z-span of the {e1, e2, e3} and φ is in the Z-span of {e∗1, e∗2, e∗3}.
We denote Kf =

∏
pKp, where Kp is the hyperspecial maximal compact subgroup of G(Qp) that

is specified as the stabilizer of (Θ0 ⊗ Zp)3 inside of G(Qp). That Kp is hyperspecial follows from
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[7, Section 4] and [2, Proposition 5.4]. Similarly, we let G2(Zp) be the stabilizer of Θ0 ⊗ Zp inside

G2(Qp); this is a hyperspecial maximal compact subgroup.

We define a maximal compact subgroup of G′(R), K ′∞, as follows. Given v ∈ V3, suppose that

ṽ ∈ V ∨3 is given by the linear mapping ej 7→ e∗j on V3. Similarly, if φ ∈ V ∨3 , let φ̃ in V3 be given by

the linear mapping e∗j 7→ ej . We also define a quadratic form qmaj on Θ⊗ R by

qmaj

((
a v

φ d

))
= a2 + d2 + (v, ṽ) + (φ̃, φ),

where ( , ) denotes the evaluation pairing between V3 and V ∨3 . Then K ′∞ is defined as the subgroup

of G′(R) that preserves the quadratic form qmaj. We now let K∞ ⊆ G(R) be the inverse image of

K ′∞ under the map proj1 : G→ G′.

Put another way, we define ι : Θ→ Θ as

ι

((
a v

φ d

))
=

(
d −φ̃
−ṽ a

)
.

If x = ( a vφ d ), then qmaj(x) = (x, ι(x)). Conjugation by ι induces a Cartan involution on G′ and on

G2 ⊆ G (see [14, Claim 2.1]).

2.2. Lie algebra definitions. The maps G2 → G → G′ induce Lie(G2) → Lie(G′) ' ∧2Θ. This

embedding is the one specified in Section 2.2 in [14], and we will use notation from that section.

The Heisenberg parabolic PG of G is defined to be the one which stabilizes the line spanned by

E13 = e∗3 ∧ e1 in ∧2Θ. The Heisenberg parabolic P of G2 is similarly defined as the stabilizer of the

line spanned by E13 in Lie(G2), thus PG ∩G2 = P .

2.3. Setup for K∞. Let

K ′∞ = S(O(4)×O(4)) =
{

(g1, g2) ∈ O(4)×O(4) : det(g1) det(g2) = 1
}
.

We remind the reader that SO(4) = (SU(2) × SU(2))/{±1}. Thus there are four copies of sl2 in

Lie(K∞)⊗C. We now make this explicit since these sl2’s will be used in Section 7. Also note that

Lie(K∞) ⊆ Lie(G′) ' ∧2Θ. Let

(2.1)
{
b1, b2, b3, b4, b−4, b−3, b−2, b−1

}
=
{
e1, e

∗
3, ε2, e

∗
2,−e2, ε1,−e3,−e∗1

}
in order. Here ε1 = ( 1 0

0 0 ) and ε2 = ( 0 0
0 1 ). With the basis {b1, b2, b3, b4, b−4, b−3, b−2, b−1} of Θ,

one has (bj , bk) = (b−j , b−k) = 0 and (bj , b−k) = δjk. The involution ι satisfies ι(bj) = b−j and

ι(b−j) = bj for j = 1, 2, 3, 4. Define

u1 =
1√
2

(
b1 + b−1

)
, u2 =

1√
2

(
b2 + b−2

)
,

v1 =
1√
2

(
b3 + b−3

)
, v2 =

1√
2

(
b4 + b−4

)
,
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and

u−1 =
1√
2

(
b1 − b−1

)
, u−2 =

1√
2

(
b2 − b−2

)
,

v−1 =
1√
2

(
b3 − b−3

)
, v−2 =

1√
2

(
b4 − b−4

)
.

With the above notation, we now specify the four copies of sl2 in Lie(K∞) ⊗ C. One copy of sl2

has the basis consisting of

• e+ =
1

2
(u1 − iu2) ∧ (v1 − iv2),

• h+ = i(u1 ∧ u2 + v1 ∧ v2),

• f+ = −1

2
(u1 + iu2) ∧ (v1 + iv2).

The other sl2 from the first SO(4) in K ′∞ = S(O(4) × O(4)) is obtained by replacing v2 with −v2

in the above formulas. Thus it has a basis that consists of

• e′+ =
1

2
(u1 − iu2) ∧ (v1 + iv2),

• h′+ = i(u1 ∧ u2 − v1 ∧ v2),

• f ′+ = −1

2
(u1 + iu2) ∧ (v1 − iv2).

The third copy of sl2 has the basis consisting of

• e− =
1

2
(u−1 − iu−2) ∧ (v−1 − iv−2),

• h− = −i(u−1 ∧ u−2 + v−1 ∧ v−2),

• f− = −1

2
(u−1 + iu−2) ∧ (v−1 + iv−2).

Finally, the basis of the fourth copy of sl2 consists of

• e′− =
1

2
(u−1 − iu−2) ∧ (v−1 + iv−2),

• h′− = −i(u−1 ∧ u−2 − v−1 ∧ v−2),

• f ′− = −1

2
(u−1 + iu−2) ∧ (v−1 − iv−2).

The compatible Cartan involutions on G2 and G, and the embedding G2 ⊆ G picks out a distin-

guished sl2 of the above four, the image of the long root sl2 of G2. The long root sl2 is given in

Section 4.1.1 in [14] or equivalently, by combining the discussion in Section 5.1 and Section 4.2.4 of

[15]. From Section 4.1.1 in [14], we obtain

E =
1

4

(
e1 + e∗1 − i(e3 + e∗3)) ∧ (ε2 − ε1 − i(e2 + e∗2)

)
,

F = −E and H = [E,F ].

With the identification in (2.1), it follows that the long root sl2 of G2 maps into the third copy

of sl2 in Lie(K∞)⊗ C that was given above.

We denote by C2 the representation of Lie(K∞)⊗C which is the two-dimensional representation

of the long root sl2 and the trivial representation of the other sl2’s. Let {x, y} be a basis of C2 on

elements on which H acts as 1,−1, in order, and for which Fx = y. The even symmetric powers in

Sym2`(C2) exponentiate to representations of K∞ and have the basis {x2`, x2`−1y, . . . , xy2`−1, y2`}.
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2.4. Binary cubic forms. Here, we briefly recall some aspects of binary cubic forms, as studied in

[14], that will be used in the next subsection.

Let V2 denote the defining representation of GL2. The space

W = Sym3(V2)⊗ det(V2)−1

is the space of binary cubic forms. If f(w, z) = aw3 + bw2z + cwz2 + dz3 is a binary cubic and

g ∈ GL2, then we define g · f to be the binary cubic

(g · f)(w, z) = det(g)−1f((w, z)g).

Also, we will sometimes use a right action of GL2 on the space of binary cubics. We define

g̃ =

(
s −q
−r p

)
for g =

(
p q

r s

)
∈ GL2,

so that gg̃ = det(g). We then define

f · g = g̃ · f = det(g)2f((w, z)g−1).

There is a GL2-equivariant symplectic form on W that is defined as

〈aw3 + bw2z + cwz2 + dz3, a′w3 + b′w2z + c′wz2 + d′z3〉 = ad′ − bc′

3
+
cb′

3
− da′.

We have

〈g · f, g · f ′〉 = det(g)〈f, f ′〉 and 〈f, g · f ′〉 = 〈f · g, f ′〉 for all f, f ′ ∈W.

There is a GL2-equivariant quartic form on the space W . For v = aw3 + bw2z + cwz2 + dz3 ∈ W ,

this is given by

q(v) =
(
ad− bc

3

)2
+

4

27
ac3 +

4

27
db3 − 4

27
b2c2

= − 1

27
(−27a2d2 + 18abcd+ b2c2 − 4ac3 − 4db3).

2.5. Characters of the Heisenberg parabolic. Throughout the paper, we fix the standard additive

character to be ψ : Q\A→ C×. We will abusively denote the p-component of this additive character

by ψ. Thus, if x ∈ Qp and x = x0 + x1 with x0 ∈ Zp and x1 = m/pr, then

ψ(x) = e2πix1 .

We let N denote the unipotent radical of the Heisenberg parabolic P of G2 and let M denote

the Levi subgroup of P that also stabilizes the line spanned by E31. We identify M with GL2 as

in [14, Section 5.2]. We now recall this identification. Suppose that g ∈ GL2 has the matrix
(
a b
c d

)
.

Then the action of g on Θ is given by

• e1 7→ ae1 + ce∗3

• e∗3 7→ be1 + de∗3

• (ad− bc)ε1 7→ adε1 + abe∗2 − cde2 − bcε2
• (ad− bc)e∗2 7→ acε1 + a2e∗2 − c2e2 − acε2

8



• (ad− bc)e2 7→ −bdε1 − b2e∗2 + d2e2 + bdε2

• (ad− bc)ε2 7→ −bcε1 − abe∗2 + cde2 + adε2

On another note, a binary cubic form provides a character of N . Let Z denote the one-dimensional

center of N . Denote by W the representation Sym3(V2)⊗det(V2)−1 of M ' GL2. The exponential

map provides an identification exp : W ' N/Z as specified in [14, p. 18]. Namely, to the binary

cubic

u1x
3 + u2x

2y + u3xy
2 + u4y

3,

we associate the element

u1E12 +
u2

3
v1 +

u3

3
δ3 + u4E23 in Lie(G2).

Now, if ω ∈W , then n 7→ ψ(〈ω, n〉) defines a character of N . Here n is the image of n in N/Z 'W
and ψ is our fixed additive character.

3. The Rankin-Selberg integral

In this section we give an overview of the calculations that will be done in the rest of the paper.

3.1. The Eisenstein series. We begin by defining various Eisenstein series on the group G. Recall

that PG denotes the Heisenberg parabolic of G. We denote its generating character by ν : PG →
GL1, so that

δPG(p) = |ν(p)|5.

Let E`(g, s) be the Eisenstein series of weight ` on G that is normalized with a flat section. More

precisely, if x and y denote the variables in Sym2`(C2), define f`(g, s) to be the unique section in

Ind
G(A)
PG(A)(|ν|

s) which is valued in V` = Sym2`(C2) and satisfies the properties

(i) f`(kf , s) = x`y` for all kf ∈ Kf ⊆ G(Af ),

(ii) f`(gk, s) = k−1 · f`(g, s) for all g ∈ G(A) and k ∈ K∞.

(In this paper we use an unnormalized induction). Then the Eisenstein series is given by

E`(g, s) =
∑

γ∈PG(Q)\G(Q)

f`(γg, s).

Let Λ(s) be the completed Riemann zeta function, that is,

Λ(s) = π−
s
2 Γ
(s

2

)
ζ(s).

For our purposes, we define a normalized Eisenstein series as

(3.1) E∗` (g, s) = Λ(s− 1)2Λ(s)Λ(2s− 4)
Γ(s+ `− 1)Γ(s+ `− 2)

Γ(s− 1)Γ(s− 2)
E`(g, s).

It will be convenient for our calculations to define another Eisenstein series. Let Φf be the

Schwartz-Bruhat function on ∧2Θ⊗ Af that is the characteristic function of ∧2Θ0 ⊗ Ẑ. Note that

Φf is stable by Kf . For g ∈ G(Af ), we define

ffte(g,Φf , s) =

∫
GL1(Af )

|t|sΦf (tg−1E13) dt,

9



where ffte stands for the finite part of f . Also, let

f(g,Φf , s) = ffte(gf ,Φf , s)f`(g∞, s).

Because Φf is Kf -stable, it is immediate that f(g,Φf , s) = ζ(s)f`(g, s). We set

(3.2) E(g,Φf , s) =
∑

γ∈PG(Q)\G(Q)

f(γg,Φf , s).

Then the Rankin-Selberg integral is defined as

I(ϕ,Φ, s) =

∫
G2(Q)\G2(A)

{ϕ(g), E(g,Φf , s)}K dg.

Recall that here ϕ is a modular form on G2 of weight `. In particular, ϕ is valued in V`, and

constructed from a cuspidal automorphic representation π = πf ⊗ π∞,` with π∞,` a quaternionic

discrete series of minimal K-type V∨` ' V`. The term {ϕ(g), E(g,Φf , s)}K is the K-invariant

pairing of these two V`-valued automorphic functions.

3.2. The unfolded Rankin-Selberg integral. We now explain how the Rankin-Selberg integral

I(ϕ,Φf , s) unfolds.

Let vE ∈W be the binary cubic

vE = w2z + wz2 = wz(w + z).

Also, let χ be the character of N(Q)\N(A) determined by vE as in Section 2, and set

ϕχ(g) =

∫
N(Q)\N(A)

χ−1(n)ϕ(ng) dn.

Define

ṽE = ε1 ∧ (e1 + e∗3),

which is an element of ∧2Θ. Let N0,E ⊆ N be the subgroup consisting of those n ∈ N for which

〈vE , n〉 = 0.

Theorem 3.1. We have

(3.3) I(ϕ,Φf , s) =

∫
N0,E(A)\G(A)

{f(γ0g,Φf , s), ϕχ(g)}K dg,

where γ0 ∈ G(Q) satisfies γ−1
0 E13 = ṽE.

The proof of this theorem is due to Gurevich and Segal [10, 16], but its above form is essentially

Theorem 5.2 in [14].

3.3. Local integrals. In order to analyze I(ϕ,Φf , s), we must consider associated local integrals

at every place of Q. In this section, we describe these local integrals and also deduce the main

theorems of the paper.

The integral at the archimedean place is given by

I(s; `) =

∫
N0,E(R)\G2(R)

{f`(γ0g, s),Wχ(g)}K dg.

10



Here Wχ is the generalized Whittaker function of [14, Section 4] and [15]. Now, in view of the

normalization of the Eisenstein series in (3.1), note that

ΓR(s− 1)2ΓR(s)ΓR(2s− 4)
Γ(s+ `− 1)Γ(s+ `− 2)

Γ(s− 1)Γ(s− 2)
= 2sΓR(s− 1)ΓC(s+ `− 1)ΓC(s+ `− 2).

Thus we suitably define a normalized archimedean zeta integral as

I∗(s; `) = 2sΓR(s− 1)ΓC(s+ `− 1)ΓC(s+ `− 2)I(s; `).

This integral will be computed in Section 8. In Theorem 8.1, we prove that I∗(s; `) = L(π`,∞, s−2)

up to a nonzero constant.

We now describe the local integrals at the finite places. Let Φp denote the characteristic function

of ∧2Θ0 ⊗ Zp and

fp(g,Φp, s) =

∫
GL1(Qp)

|t|sΦp(tg
−1E13) dt.

Here fp(g,Φp, s) is also the associated local inducing section, so that fp(1,Φp, s) = ζp(s). Let Vπp
denote the space of representation πp, and write v0 for a spherical vector. Suppose that L : Vπp → C
is an (N,χ)-functional, that is,

L(nv) = χ(n)L(v) for all n ∈ N(Qp) and v ∈ Vπp .

At a finite place p, we will compute

Ip(s) = Ip(L, s) :=

∫
N0,E(Qp)\G2(Qp)

fp(γ0g,Φp, s)L(gv0) dg(3.4)

=

∫
N(Qp)\GL1(Qp)×G2(Qp)

|t|sΦp,χ(t, g)L(gv0) dt dg,

where

(3.5) Φp,χ(t, g) =

∫
N0,E(Qp)\N(Qp)

χ(n)Φp(tg
−1n−1ṽE) dn.

We will prove the following theorem.

Theorem 3.2. We have

(3.6) Ip(s) = Ip(L; s) = L(v0)
L(πp, Std, s− 2)

ζp(s− 1)2ζp(2s− 4)
.

The proof of this theorem proceeds by following the strategies in [10, 14, 16].

Let V7 be the perpendicular subspace to 1 in Θ, and set V7(Z) = V7 ∩ Θ0. Similarly, define

V7(Zp) = V7(Z)⊗ Zp. Note that because G2 stabilizes 1, V7(Zp) is stabilized by G2(Zp). We write

r7 : G2 → GL(V7) for the action map.

We now define two Hecke operators on G2. First, for t ∈ GL1(Qp) and h ∈ G2(Qp), let

∆(t, h) = char
(
t · r7(h) ∈ End(V7(Zp))

)
.

11



We call this the approximate basic function (see Section 5.3 in [14] for some remarks on this

terminology). Define another Hecke operator on G2 as

T = p−3 × char
(
g ∈ G2(Qp), p.r7(g) ∈ End(V7(Zp))

)
.

For ease of notation, let z = p−s. In order to prove (3.6), we will prove that∫
GL1(Qp)×G2(Qp)

|t|s+2∆(t, g)L(gv0) dt dg

= M(πp, s)

∫
N(Qp)\GL1(Qp)×G2(Qp)

|t|s+1Φp,χ(t, g)L(gv0) dt dg,

(3.7)

where

M(πp, s) = (1− pz)(1− z)N0(πp, s− 1)ζp(s)
2ζp(2s− 2),

and

N0(πp, s)v0 = 1 + (p−1 + 1)z +
z2

p
+ (p−2 + p−1)z3 +

z4

p2
− z2

p
T.

Proving (3.7) implies our desired relation between Ip(L; s) and L(πp,Std, s) as in Theorem 3.2, this

is essentially Proposition 7.1 in [10]. For an explanation of this implication, see Section 5.3 in [14].

Now, (3.7) has been proved for p ≥ 5 in [10] and [14]. We will prove it for p = 2, 3 as well.

To do so, we will compute the left-hand side and the right-hand side of (3.7) separately and show

that they are the same. The left-hand side will be considered in Section 5 and the right-hand side

will be computed in Section 6. In order to do these computations, some properties of binary cubic

forms and their relations to cubic rings will be useful. We spell these out in the next section.

4. The arithmetic invariant theory of binary cubics

We will provide some necessary results on the relationship between binary cubic forms and cubic

rings. We refer to [4, Section 4] and [8] for a primer on this relationship.

Suppose that

f(w, z) = aw3 + bw2z + cwz2 + dz3

is a binary cubic over some ring R. One associates to f the cubic R-algebra T with the basis

{1, ω, θ} and the multiplication table

• ωθ = −ad
• ω2 = −ac+ aθ − bω
• θ2 = −bd+ cθ − dω.

Following [4, Section 4], we call such a basis a good basis. Suppose that m = (m11 m12
m21 m22 ) is a 2× 2

matrix with coefficients in R. Write Tm for the R-lattice in T that is spanned by {1,m11ω +

m12θ,m21ω +m22θ}. Let ω′′ and θ′′ be defined by the relation( ω′′

θ′′

)
= m

( ω

θ

)
=

(
m11 m12

m21 m22

)( ω

θ

)
.

One can naturally ask what condition guarantees that Tm is closed under multiplication. This

question is answered by the following proposition.
12



Proposition 4.1. Suppose R has characteristic 0. Set

f ′(w, z) = m · f(w, z),

where the action is as given in 2.4 and includes a 1/det(m) factor, and write f ′(w, z) = a′w3 +

b′w2z+ c′wz2 + d′z3. With the notation as above, the R-lattice Tm is closed under multiplication if

and only if

(i) f ′(w, z) has coefficients in R, that is, a′, b′, c′, d′ ∈ R,

(ii) and

(
b′

−c′

)
≡ m

(
b

−c

)
(mod 3).

To prove this proposition, we require a lemma. With the same notation as above, set ω′′ =

m11ω +m12θ and θ′′ = m21ω +m22θ. Let ω′ and θ′ in T ⊗ Frac(R) be defined by(
ω′

θ′

)
= m

(
ω

θ

)
+

1

3

{(
b′

−c′
)
−m

( b

−c

)}
∈ T ⊗ Frac(R)

Finally, let ω0 = ω + b
3 and θ0 = θ − c

3 , so that tr(ω0) = tr(θ0) = 0.

Lemma 4.2. The elements ω′ and θ′ have the multiplication table

(i) ω′θ′ = −a′d′

(ii) ω′2 = −a′c′ + a′θ′ − b′ω′

(iii) θ′2 = −b′d′ + c′θ′ − d′ω′.

Proof. This lemma is well-known. It essentially is the statement that the association of based cubic

rings to binary cubic forms is equivariant for the action of GL2. For completeness, we give some

details regarding a proof.

First, instead of checking the multiplication table above of {1, ω′, θ′}, we verify the equivalent

multiplication table for
( ω′0
θ′0

)
= m

( ω0

θ0

)
.

Now, the trace 0 basis {ω0, θ0} which has the multiplication table

• ω0θ0 =
b

3
θ0 −

c

3
ω0 +

(
bc

9
− ad

)
• ω2

0 = aθ0 −
b

3
ω0 +

2

9
(b2 − 3ac)

• θ2
0 =

c

3
θ0 − dω0 +

2

9
(c2 − 3bd).

We wish to prove that the multiplication table for {ω′0, θ′0} has the same form, with a, b, c, d replaced

by a′, b′, c′, d′, respectively. To do this, we first write the multiplication table of {ω0, θ0} as(
ω0

θ0

)(
ω0 θ0

)
=

1

3

(
3a b

b c

)
θ0 −

1

3

(
b c

c 3d

)
ω0 +

1

9

(
2b2 − 6ac bc− 9ad

bc− 9ad 2c2 − 6bd

)
.
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Then we obtain

m

(
ω0

θ0

)(
ω0 θ0

)
mt =

1

3

(
m−1

21 m

(
3a b

b c

)
mt −m−1

11 m

(
b c

c 3d

)
mt

)
ω′0

+
1

3

(
m−1

22 m

(
3a b

b c

)
mt −m−1

12 m

(
b c

c 3d

)
mt

)
θ′0

+
1

9
m

(
2b2 − 6ac bc− 9ad

bc− 9ad 2c2 − 6bd

)
mt.

Equivalently, this is(
ω′0
θ′0

)(
ω′0 θ′0

)
= − 1

3
det(m)−1

(
m21m

(
3a b

b c

)
mt +m22m

(
b c

c 3d

)
mt

)
ω′0

+
1

3
det(m)−1

(
m11m

(
3a b

b c

)
mt +m12m

(
b c

c 3d

)
mt

)
θ′0

+
1

9
m

(
2b2 − 6ac bc− 9ad

bc− 9ad 2c2 − 6bd

)
mt.

Then(
ω′0
θ′0

)(
ω′0 θ′0

)
=

1

3

(
3a′ b′

b′ c′

)
θ0 −

1

3

(
b′ c′

c′ 3d′

)
ω0 +

1

9

(
2b′2 − 6a′c′ b′c′ − 9a′d′

b′c′ − 9a′d′ 2c′2 − 6b′d′

)
,

where we used the definition of the action of GL2 on binary cubics and the equivariance of the

Hessian of a binary cubic. The lemma then follows. �

We denote the condition (ii) of Proposition 4.1 by † as below.

†
(

b′

−c′

)
≡ m

(
b

−c

)
(mod 3).

Then the statement of Proposition 4.1 follows immediately from

Proposition 4.3. The following statements are equivalent.

(i) The R-lattice Tm spanned by {1, ω′′, θ′′} is closed under multiplication.

(ii) The R-lattice spanned by {1, ω′, θ′} is closed under multiplication and † holds.

(iii) m · f has coefficients in R and † holds.

Proof. From Lemma 4.2, it is clear that (ii) and (iii) are equivalent. It is also clear that (ii) implies

(i). To prove that (i) implies (ii), we argue as follows. First, we define(
δ1

δ2

)
=
m

3

(
b

−c

)
+

1

3

(
−b′

c′

)
,

so that ω′ = ω′′ + δ1 and θ′ = θ′′ + δ2. Observe that

ω′′θ′′ = (ω′ − δ1)(θ′ − δ2) = B − δ1θ
′′ − δ2ω

′′
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for some B ∈ Frac(R). Thus if (i) holds, then δ1, δ2 ∈ R. Since δ1, δ2 ∈ R, the equalities ω′ = ω′′+δ1,

θ′ = θ′′ + δ2 imply that the R-lattice spanned by {1, ω′, θ′} is closed under multiplication, so that

(ii) holds. The result then follows. �

In the case where R = Zp, we can go further.

Proposition 4.4. If SpanZp(1, ω
′, θ′) is closed under multiplication, then † holds. Equivalently, if

m · f has its coefficients in Zp, then † holds.

Although this proposition has nontrivial content only when p = 3, we write down its proof for

general p.

Proof. The idea is to use the Cartan decomposition of m ∈ GL2(Qp) ∩M2(Zp). That is, such an

m is a product k1tk2 for some k1, k2 ∈ GL2(Zp) and a diagonal element t in GL2(Qp) ∩M2(Zp).
We first claim that if m = k ∈ GL2(Zp), then † automatically holds for this m. To see this, note

that because k ∈ GL2(Zp), SpanZp(1, ω, θ) = SpanZp(1, ω
′′, θ′′). Thus that † holds follows from the

equivalence of (i) and (iii) of Proposition 4.3.

Now suppose that m = t = diag(t1, t2) is diagonal in M2(Zp) ∩ GL2(Zp). Then for such m,

b′ = t1b and c′ = t2c, and it is clear that if t · f has coefficients in Zp, then † holds.

Now suppose that m = k1tk2 and that m · f has coefficients in Zp. It follows that tk2 · f has

coefficients in Zp. Thus, from what has been said, † holds for m′ := tk2. Applying k1, it follows

that † holds for m, as desired. �

We note the following corollary of Lemma 4.2. Recall that an order is a subring of a K-algebra,

where K is a field and R is an integral domain in K, which is a full R-lattice.

Corollary 4.5. Let R = Zp, and let the binary cubic f(w, z) correspond to the maximal order T in

the étale Qp-algebra T ⊗ Qp. Assume that for m ∈ GL2(Qp), the coefficients of m · f lie in Zp.
Then m ∈M2(Zp).

Proof. Let us assume that m = (m11 m12
m21 m22 ) and T has the good basis {1, ω, θ}. We have ω′ =

m11ω + m12θ + δ1 and θ′ = m21ω + m22θ + δ2. Since m · f has coefficients in Zp, Lemma 4.2

implies that SpanZp
(
1, ω′, θ′

)
is closed under multiplication. But then, because T is maximal by

assumption, this means that ω′, θ′ ∈ T . It follows that all entries of m are in Zp, as desired. �

5. The Fourier coefficient of the approximate basic function

In this section, we explain the computation of the left-hand side of (3.7). For t ∈ GL1 and

h ∈ GL2 'M the Levi of the Heisenberg parabolic of G2, define

Dχ(t, h) =

∫
N(Qp)

χ(n)∆(t, nh) dn.

Then, by the Iwasawa decomposition, the left-hand side of (3.7) is

D(s) =

∫
GL1(Qp)×GL2(Qp)

δ−1
P (h)|t|s+2Dχ(t, h)L(hv0) dh dt.

15



For p ≥ 5, the Dχ(t, h) is computed in [14, Proposition 5.7]. Below, we explain that the expression

obtained for Dχ(t, h) in loc cit continues to hold for p = 2 and 3.

We now recall various notations from [14] that we need to state the computation of Dχ(t, h).

First, let

fmax(w, z) = aw3 + bw2z + cwz2 + dz3

be a binary cubic form corresponding to the maximal order

OE = Zp × Zp × Zp ∈ Q3
p,

so that fmax is some GL2(Zp) translate of wz(w+z). Let {1, ω, θ} be the good basis of OE associated

to fmax. For x =
(
α β
γ δ

)
∈ GL2(Qp), T (x) denotes the Zp-module spanned by {1, δω−βθ,−γω+αθ}.

Hence T (x) = Tx̃ in the notation of Section 4, where x̃ is as defined in Section 2.4. Note that, by the

results of Section 4, if T (x) is closed under multiplication, then x ∈M2(Zp) and x̃ · fmax = fmax · x
has its coefficients in Zp, and vice versa.

For a general binary cubic form Ω with coefficients in Zp, define N(Ω) to be the number of 0’s

of Ω in P1(Fp). Also, for an element h ∈ GL2(Qp), define val(h) ∈ Z to be the largest integer n so

that p−nh ∈M2(Zp).

Proposition 5.1. Define x0(h) by x0(h) = p− val(h)h, and set λ = det(h)/t. Write D′χ(λ, h) =

Dχ(t, h), i.e., D′χ is the same function as Dχ, except that it is expressed in terms of the new

variables λ and h. Further, let

ε(x0(h)) =

{
1 if x0(h) ∈ GL2(Zp),
2 if x0(h) /∈ GL2(Zp).

Then

D′χ(λ, h) = | det(λ−1h)|−1 char
(
h ∈M2(Zp), val(λ−1h) ∈ {0, 1}, T (x0(h)) a ring

)
×

{
1 if val(λ−1h) = 0

N(fmax)− ε(x0(h)) if val(λ−1h) = 1

}
.

Proof. This is essentially Proposition 5.7 in [14]. The proof carries over line-by-line except one

minor change. To aid the reader in checking this, we give some of the omitted details from loc cit

to clarify that the result continues to hold for p = 2, 3.

First, we show thatDχ(t, h) 6= 0 implies h ∈M2(Zp). We haveDχ(t, h) =
∫
N ψ(〈ω, n〉)∆(t, nh) dn,

where ω is the element of W that corresponds to fmax. By the change of variable n 7→ hnh−1, we

find that, up to positive constant coming from the change in measure,

Dχ(t, h) =

∫
N
ψ(〈ω, hnh−1〉)∆(t, hn)dn.

Now, ∆ is right-invariant under G2(Zp), so if u0 ∈ G2(Zp) ∩N , then ∆(t, hnu0) = ∆(t, hn). Then

by the change of variable n 7→ nu0 in Dχ(t, h), one finds that

Dχ(t, h) = ψ(〈ω, hu0h
−1〉)Dχ(t, h).
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Thus, for Dχ(t, h) to be nonzero, one must have 〈ω, hu0h
−1〉 ∈ Zp for every u0 ∈ N ∩ G2(Zp).

It follows that ω · h corresponds to a binary cubic form with Zp integral coefficients, and thus

h ∈M2(Zp) by Corollary 4.5.

Let us remark upon the one aspect of the proof which is ever so slightly different from the proof

of Proposition 5.7 in [14]. In loc cit, one verifies that Dχ(t, h) nonzero implies fmax · x0(h) has Zp
coefficients. Now, by Proposition 4.4, one concludes that T (x0(h)) is a ring.

The rest of the proof is as that of Proposition 5.7 in [14]. �

6. Non-archimedean zeta integral

In this section we compute the right-hand side of (3.7). In the case when p ≥ 5, the calculation

is done in [14], so the new work is for p = 2 and 3. Still, many computations are similar to the ones

in the proof for the case p ≥ 5.

6.1. The computation of Φp,χ. To compute the right-hand side of (3.7), we first compute the

function Φp,χ(t, g) in (3.5). The computation of this function is different from the one in Lemma

5.6 of [14].

Lemma 6.1. Suppose that h =
(
a b
c d

)
is in the Heisenberg Levi, so that h takes e1 to ae1 + ce∗3 and

e∗3 to be1 + de∗3. Let f0(w, z) = w2z + wz2. Set λ = det(h)/t and h′ = 1
λ h̃ = λ−1

(
d −b
−c a

)
. Set

f1(w, z) = h′ · f0(w, z), and write fi(w, z) = αiw
3 + βiw

2z + γiwz
2 + δiz

3 for i = 0, 1. Then

Φp,χ(t, h) = |λ|A0(λ, h),

where A0(λ, h) is the characteristic function of the quantities

• λ ∈ Z,

• h′ ∈ Z,

• h′ · f0(w, z) = det(h′)−1f0((w, z)h′) ∈ Z,

•
(

β1

−γ1

)
≡ h′

(
β0

−γ0

)
(mod 3).

Before we prove Lemma 6.1, we state a corollary of it and give various notations that will be

used in its proof. For a cubic ring T over Zp, the largest integer c so that T = Zp + pcT0 for a

cubic ring T0 over Zp is called the p-adic content of T and denote by c(T ). If T corresponds to the

binary cubic g, then the p-adic content of T is the largest integer c so that p−cg has coefficients

in Zp. Let x =
(
α β
γ δ

)
∈ GL(2,Qp). Recall that we denote T (x) as the Zp-module spanned by

{1, δω − βθ,−γω + αθ}, where {1, ω, θ} is the good basis of the fixed maximal order.

Corollary 6.2. We have

A0(λ, h) = char
(
λ ∈ Zp, T (λ−1h) is a ring

)
= char

(
λ ∈ Zp, λ | pc(T (h))

)
.

Proof. This follows from Lemma 6.1 by an application of the results of Section 4. The condition

λ ∈ Zp corresponds to the first bullet point while the condition λ | pc(T (h)) corresponds to the last

three bullet points in Lemma 6.1. �
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Note that the characteristic function in the statement of Corollary 6.2 is the same characteristic

function as described in [14, p. 21] for p ≥ 5.

We now introduce some notation that will be used in the proof of Lemma 6.1. Recall that Θ0 is

the split model of the integral octonions with Z-basis {ε1, ε2, e1, e2, e3, e
∗
1, e
∗
2, e
∗
3}. For αj and γk in

a ring R, we define

{α1, α2, α3}e1 := α1ε1 ∧ e1 − α2ε2 ∧ e1 + α3e
∗
2 ∧ e∗3,

{α1, α2, α3}e2 := α1ε1 ∧ e2 − α2ε2 ∧ e2 + α3e
∗
3 ∧ e∗1,

{α1, α2, α3}e3 := α1ε1 ∧ e3 − α2ε2 ∧ e3 + α3e
∗
1 ∧ e∗2,

and

{γ1, γ2, γ3}e∗1 := γ2ε1 ∧ e∗1 − γ1ε2 ∧ e∗1 + γ3e2 ∧ e3,

{γ1, γ2, γ3}e∗2 := γ2ε1 ∧ e∗2 − γ1ε2 ∧ e∗2 + γ3e3 ∧ e1,

{γ1, γ2, γ3}e∗3 := γ2ε1 ∧ e∗3 − γ1ε2 ∧ e∗3 + γ3e1 ∧ e2

as elements of ∧2
ZΘ0 ⊗R. This notation is useful because one has[

{α1, α2, α3}e1 , {β1, β2, β3}e2
]

= {α2β3 + α3β2, α3β1 + α1β3, α1β2 + α2β1}e∗3
and [

{γ1, γ2, γ3}e∗1 , {δ1, δ2, δ3}e∗2
]

= {γ2δ3 + γ3δ2, γ3δ1 + γ1δ3, γ1δ2 + γ2δ1}e3 .

We also obtain [
{α1, α2, α3}e1 , {γ1, γ2, γ3}e∗3

]
= (α1γ1 + α2γ2 + α3γ3)e1 ∧ e∗3,[

{α1, α2, α3}ej , {β1, β2, β3}ej
]

= 0.
(6.1)

For our later use, we record the following formulas. From the formulas in Section 2.5, we find that

under the action of m =
(
a b
c d

)
∈ GL2 'M , we have

2ε1 ∧ e1 + ε2 ∧ e1 − e∗2 ∧ e∗3 7→ a (2ε1 ∧ e1 + ε2 ∧ e1 − e∗2 ∧ e∗3) + c (2ε2 ∧ e∗3 + ε1 ∧ e∗3 + e1 ∧ e2) ,

and

2ε1 ∧ e∗3 + ε2 ∧ e∗3 − e1 ∧ e2 7→ b (ε1 ∧ e1 + 2ε2 ∧ e1 + e∗2 ∧ e∗3) + d (2ε1 ∧ e∗3 + ε2 ∧ e∗3 − e1 ∧ e2) .

In other words,

{2,−1,−1}e1 7→ a{2,−1,−1}e1 + c{−2, 1, 1}e∗3 ,

and

{−1, 2,−1}e∗3 7→ b{1,−2, 1}e1 + d{−1, 2,−1}e∗3 .

Now, recall that

ṽE = ε1 ∧ (e1 + e∗3) = ε1 ∧ e1 + ε1 ∧ e∗3 = {1, 0, 0}e1 + {0, 1, 0}e∗3 .

We thus have

ṽE = {1, 0, 0}e1 + {0, 1, 0}e∗3

=
1

3

(
{1, 1, 1}e1 + {1, 1, 1}e∗3

)
+

1

3

(
{2,−1,−1}e1 + {−1, 2,−1}e∗3

)
.

(6.2)
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The terms in the first set of parentheses are in the Lie algebra g2, and correspond to the cubic

x2y + xy2 in the sense that was described in the first paragraph of [14, p. 18].

For m ∈M ' GL2, we can now compute mṽE . Write m =
(
a b
c d

)
. Also, let f0(w, z) = w2z+wz2,

and

m · f0(w, z) = det(m)−1f0((w, z)m) = αw3 + βw2z + γwz2 + δz3.

We recall the following notations from Section 4.1 in [14].

• E12 = −e1 ∧ e∗2
• v1 = {1, 1, 1}e1
• δ3 = {1, 1, 1}e∗3
• E23 = −e2 ∧ e∗3.

By using this notation and (6.2), we obtain

mṽE =

(
αE12 +

1

3
βv1 +

1

3
γδ3 + δE23

)
+

1

3

(
a{2,−1,−1}e1 + c{−2, 1, 1}e∗3 + b{1,−2, 1}e1 + d{−1, 2,−1}e∗3

)
.

Finally, we need to present one piece of calculation before the proof of Lemma 6.1. Suppose that

X = u1E12 + u2v1 + u3δ3 + u4E23 is in the Lie algebra of N , that is, the unipotent radical of the

Heisenberg parabolic of G2. We need to compute [X, ṽE ]. By (6.1),

[X, ṽE ] = [u2v1 + u3δ3, ṽE ] = [u2{1, 1, 1}e1 + u3{1, 1, 1}e∗3 , {1, 0, 0}e1 + {0, 1, 0}e∗3 ]

= u2[{1, 1, 1}e1 , {0, 1, 0}e∗3 ]− u3[{1, 0, 0}e1 , {1, 1, 1}e∗3 ]

= (u2 − u3)e1 ∧ e∗3.

We are now in a position to compute Φχ(t, h).

Proof of Lemma 6.1. Set λ = det(h)/t and n = exp(X). From the computations above, we obtain

n−1ṽE = ṽE + (u2 − u3)E13.

Then

th−1n−1ṽE = th−1ṽE + tdet(h)−1(u2 − u3)E13 = λ−1 det(h)(h−1 · ṽE) +
u2 − u3

λ
E13.

Now, h−1 = det(h)−1
(
d −b
−c a

)
. Thus

th−1n−1ṽE =

(
α1E12 +

β1

3
v1 +

γ1

3
δ3 + δ1E23

)
+
u2 − u3

λ
E13

+ λ−1 1

3

(
d{2,−1,−1}e1 − c{−2, 1, 1}e∗3 − b{1,−2, 1}e1 + a{−1, 2,−1}e∗3

)
.
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We will use this expression to verify the result. Indeed, by rewriting it, we obtain

th−1n−1ṽE = α1E12 + δ1E23 +
u2 − u3

λ
E13

+ λ−1d{1, 0, 0}e1 + λ−1b{0, 1, 0}e1 +
1

3
(β1 − λ−1d− λ−1b){1, 1, 1}e1

+ λ−1c{1, 0, 0}e∗3 + λ−1a{0, 1, 0}e∗3 +
1

3
(γ1 − λ−1c− λ−1a){1, 1, 1}e∗3 .

Observe that in order for the integral over N0,E\N in (3.5) to be nonzero, we must have λ ∈ Zp.
Moreover, the resulting integral is |λ| times the characteristic function of the quantities

• α1, δ1 ∈ Zp,

• λ−1a, λ−1b, λ−1c, λ−1d ∈ Zp,

• 1

3
(β1 − λ−1d− λ−1b),

1

3
(γ1 − λ−1c− λ−1a) ∈ Zp.

The result follows. �

6.2. The local unramified computations. Recall that T (x) is the Zp-module spanned by {1, δω −
βθ,−γω + αθ} as in Section 6.1. For ease of notation, we set

c(x) = c(T (x)) for x ∈ GL2(Qp).

For an element h ∈ GL(2,Qp), let [h] denote the coset hGL(2,Zp). Whether or not T (x) is

closed under multiplication is independent of the element x ∈ hGL(2,Zp). Recall the integral

Ip(s) = Ip(L; s) in (3.4). By using the exact same calculations as in [14, p. 22], we notice that

Ip(s+ 1) =
1

1− z

∑
[h]

L(hv)|det(h)|−2zval(det(h))−c(h)
(

1− zc(h)+1
)

char(c(h) ≥ 0)

 .

We define

Ph(z) := zval(det(h))−c(h)
(

1− zc(h)+1
)

char(c(h) ≥ 0),

and write

Ip(s+ 1) =
1

1− z

∑
[h]

L(hv)|det(h)|−2Ph(z)

 .

To evaluate of Ip(s) in terms of L-functions, we must apply M(πp, s) to Ip(s+1) (see [14, Section

5.4, 5.8]). The computations follow line-by-line just as in loc cit. To demonstrate that the proofs

from [14] hold for p = 2, 3, we fill in various details that were omitted in that paper.

Suppose h = pch0, with f0 = fmax · h0 integral and not divisible by p, so that the content of h is

c, so c(h) = c. We begin by explaining the proof of the following lemma, which is a restatement of

Lemma 5.10 in [14].

Lemma 6.3. Suppose f = pcf0, with f0 in each of the cases enumerated below. Denote by Λf the

rank two O-lattice corresponding to f . Depending on some cases, the content c(Λ′) of the index p

sublattices Λ′ of Λf can be described as follows.

(1) If f0 irreducible mod p, then there are (p+ 1) sublattices Λ′ each of which have index p and

satisfy c(Λ′) = c− 1.
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(2) If f0 = `g where ` is a line and g is irreducible modulo p, then there is one sublattice Λ′ = Λ`

with c(Λ`) = c while the other p sublattices satisfy c(Λ′) = c− 1.

(3) If f0 = `1`2`3 where the `i are distinct lines modulo p, then there are three sublattices given

by Λ′ = Λ`i for i = 1, 2, 3, and each satisfy c(Λ`i) = c, while for other (p− 2) sublattices Λ′,

we have c(Λ′) = c− 1.

(4) If f0 = `21`2 where `1, `2 are distinct lines modulo p, then there is one sublattice Λ′ = Λ`1
with c(Λ`1) = c+ 1, another sublattice Λ′ = Λ`2 that has c(Λ`2) = c while the other (p− 1)

sublattices Λ′ all satisfy c(Λ′) = c− 1.

(5) If f0 = α`3 where ` is a line modulo p and α ∈ (O/p)×, then there is one sublattice Λ′ = Λ`

with c(Λ`2) = c+ 2 while the other p sublattices Λ′ all satisfy c(Λ′) = c− 1.

Proof. First we claim that f0 factors into linear factors over an unramified field extension L of

Qp. To see this, let T0 be the cubic ring corresponding to f0. Then by assumption, T0 ⊗ Qp is

an unramified extension of Qp. It follows that for some unramified field extension L/Qp, one has

T0 ⊗L ≈ L×L×L. The binary cubic corresponding to the right-hand side is split, say xy(x+ y).

The association between binary cubics and cubic rings is clearly compatible with base change, so

it follows that f0 factors over L.

Let OL denote the ring of integers in L. By Gauss’s Lemma, we conclude that f0 factors into

linear factors over OL, say f0 = `1 · `2 · `3. By using this factorization of f0 and the fact that p is a

uniformizer in OL, the lemma follows without much difficulty.

Suppose that we are in the final case, so f0 ≡ α`3 modulo p. Without loss of generality, assume

` = x. Then by the factorization of f0 given above, we can write f0(w, z) = β`′1`
′
2`
′
3 with β ∈ O×L

and `′1 ≡ `′2 ≡ `′3 ≡ x modulo p. It follows that 1
pf0(p(w, z)) has content 2, showing that one of the

(q + 1) sublattices has content 2.

The rest of the proof proceeds similarly. �

Next, we explain some of the aspects of the proof that were omitted in the explanations after

Lemma 5.10 in [14]. In loc cit, we have

Ph(z) = zv−c(1− zc+1) char(c(h) ≥ 0).

as we set v = and c = c(h). Define

T(p) = GL2(O)( p 0
0 1 ) GL2(O)

and

T(p−1) = GL2(O)( p
−1 0
0 1

) GL2(O).

From Section 5.7 in [14], we recall the function

Mh(z) = p2Php(z) + Php−1(z) + (N(fmax · h)− 1)Ph(z) + pPh∗T(p)(z) + Ph∗T(p−1)(z).

Also recall that for a Hecke operator Y on GL2 with coset decomposition Y =
∑

i ai[yi GL2(O)],

we have Ph∗Y (z) =
∑

i aiPhyi . Note that hyi and hp are simply scalar multiples of the matrix h.

Moreover, we define

B0(z) = 1 + (p+ 1)z + pz2 + (p2 + p)z3 + p2z4.
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In [14], the purpose of the discussion below Lemma 5.10 is to prove the following result, which is

restatement of Lemma 5.12 of loc cit.

Lemma 6.4. Let the notations be as above. Then

(1 + pz)−1L(E, s)
(
B0(z)Ph(z)− z2Mh(z)

)
= char (val(h)) = c(h)) zv−c

(
1 +N(fmax)− ε(h0)z

)
.

We first elaborate on the evaluation of B0(z)Ph(z)− z2Mh(z) in case c(h) ≥ 2, which is the case

explained in loc cit. Let

g(z) = p2zv−c+1(1− zc+2) + zv−c−1(1− zc) + pzv−c(1− zc+1).

Then, when c ≥ 2, the first three terms in the above expression for Mh(z) give g(z). The point

is that when h is changed, v and c change, as these depend on h. One has v(hp) = v(h) + 2 and

c(hp) = c(h) + 1. Thus Php(z) = zv−c+1(1 − zc+2). Similarly, Php−1(z) = zv−c−1(1 − zc), because

v(hp−1) = v(h)−2 and c(hp−1) = c(h)−1. Finally, because c ≥ 1, we have N = N(fmax ·h) = p+1,

so (N − 1)Ph(z) = pzv−c(1− zc+1). Putting these computations together gives

p2Php(z) + Php−1(z) + (N − 1)Ph(z) = g(z).

The terms in Mh(z) with the Hecke operators are computed using Lemma 6.3. For example,

when f0 is irreducible modulo p, we have v(hgi) = v(h)+1 and c(hgi) = c(h)−1 using Lemma 5.10.

Here gi are the coset representatives for the Hecke operator T(p). Then, in this case, Ph∗T(p)(z) =

(p+ 1)zv−c+2(1− zc). Similarly,

Ph∗T(p−1)(z) = (p+ 1)zv−c+1(1− zc−1).

Combining the above expressions gives the expression for Mh(z) at the bottom of [14, p. 27].

Remark. There is a typo on page 27 in [14]. In the case f0 = α`3, the term zv−c+2(1− zc+2) should

instead say zv−c−2(1− zc+2).

We now claim that the cases where c = 1 in fact do not need to be considered separately from

those where c ≥ 2. Indeed, this is because the terms that vanish because of the char(c(h) ≥ 0) in

case c = 1 all have a (1− zc−1) in them, and so vanish anyway.

We now explain the calculation of B0(z)Ph(z) − z2Mh(z) in the case c = 0. First note that, in

the case c = 0,

N = N(fmax · h) =



0 if c = 0 and f0 is irreducible modulo p,

1 if c = 0 and f0 = `p,

3 if c = 0 and f0 = `1`2`3,

2 if c = 0 and f0 = `21`2,

1 if c = 0 and f0 = α`3.

From this expression for N , one computes Mh(z) in case c = 0 as follows.

(1) Let f0 be irreducible modulo p. In this case, we necessarily have h = 1 and Mh(z) = p2z(1−
z2) + (−1)(1− z). Also, Ph(z) = 1− z and then B0(z)Ph(z)− z2Mh(z) = (1 + qz)(1− z3).
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(2) Let f0 ≡ `q (mod p). We have Mh(z) = p2zv+1(1− z2) + zv(1− z) + pzv+1(1− z) and thus

B0(z)Ph(z)− z2Mh(z) = zv(1 + pz)(1− z2).

(3) Let f0 ≡ `1`2`3 (mod p). We have Mh(z) = p2zv+1(1 − z2) + 2zv(1 − z) + 3pzv+1(1 − z)
and then B0(z)Ph(z)− z2Mh(z) = zv(1 + pz)(1− z)2(1 + 2z).

(4) Let f0 ≡ `21`2 (mod p). Then Mh(z) = p2zv+1(1− z2) + zv(1− z) + pzv+1(1− z) + pzv(1−
z2) + zv−1(1− z) and B0(z)Ph(z)− z2Mh(z) = zv(1 + pz)(1− z)(1− z2).

(5) Let f0 ≡ α`3 (mod p). Then Mh(z) = p2zv+1(1 − z2) + pzv−1(1 − z3) + zv−2(1 − z2) and

B0(z)Ph(z)− z2Mh(z) = 0.

Now, for B0(z)Ph(z) − z2Mh(z), we find the same expression as the one on the top of page 28 in

loc cit except with c = 0. Hence we obtain Lemma 6.4. This and the relationship

(B0(z)− pz2T)I(s+ 1) =
1

1− z

(∑
[h]

L((m(h))v)|det(h)|−2(B0(z)Ph(z)− z2Mh(z))

)
.

completes our evaluation of I(s).

7. The Eisenstein series

We repeat the definition of the normalized Eisenstein series in (3.1).

E∗` (g, s) = Λ(s− 1)2Λ(s)Λ(2s− 4)
Γ(s+ `− 1)Γ(s+ `− 2)

Γ(s− 1)Γ(s− 2)
E`(g, s).

The purpose of this section is to prove the following theorem.

Theorem 7.1. We have

E∗` (g, s) = E∗` (g, 5− s).

This theorem is an immediate consequence of Langlands’ functional equation, with the difficulty

being the computation of the appropriate intertwining operator of the section f`(g, s). We remark

that Segal [17] has studied the poles of this and related Eisenstein series in a right half-plane.

Consider the diagonal maximal T ′ of G′ consisting of the elements

t = diag
(
t1, t2, t3, t4, t

−1
4 , t−1

3 , t−1
2 , t−1

1

)
.

For 1 ≤ j ≤ 4, let r′j denote the characters of T ′ that takes the element t to tj . We fix a maximal T

of G that maps to T ′ under the map G→ G′, and write rj for the restriction of r′j to T . We label

the Dynkin diagram of G by roots α1 = r1 − r2, α2 = r3 + r4, α3 = r3 − r4, α4 = r2 − r3. Then α4

is the central vertex of the diagram.

We abuse notation and also denote the restriction to T of the character t 7→ |tj | of T ′ by rj .

Then the inducing character for our Eisenstein series is |ν|s = s(r1 + r2). This is in IndGB(δ
1/2
B λs)

with δ
1/2
B = 3r1 + 2r2 + r3 and λs = (s− 3)r1 + (s− 2)r2 − r3.

Let N be the unipotent radical of the Heisenberg parabolic, so that the roots in N are r1 −
r3, r1 − r4, r1 + r4, r1 + r3, r2 − r3, r2 − r4, r2 + r4, r2 + r3, r1 + r2. The long intertwiner for N is

w = [412343214] = [412434214]. Here the notation [ijk] means that one performs a reflection in the
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roots i, j, k from right to left. To see that this expression for w as a product of simple reflections is

correct, one checks that this w makes the roots in N negative, and that it has length 9.

Now, we set

M(w, s)f`(g, s) =

∫
N(A)

f`(w
−1ng, s) dn.

If the real part of s is sufficiently large, then this integral converges and has a meromorphic con-

tinuation in s. We will prove the following result on the integral.

Proposition 7.2. We have

M(w, s)f`(g, s) = c`(s)f`(g, 5− s),

where

c`(s) =
Λ(s− 3)2Λ(s− 4)Λ(2s− 5)

Λ(s− 1)2Λ(s)Λ(2s− 4)

Γ(s− 2)Γ(s− 3)Γ(s− 2)Γ(s− 1)

Γ(s− `− 3)Γ(s− `− 2)Γ(s+ `− 1)Γ(s+ `− 2)
.

Proof of Theorem 7.1. We note the identity

Γ(s− 2)Γ(s− 3)

Γ(s− `− 2)Γ(s− `− 3)
=

Γ(4− s+ `)Γ(3− s+ `)

Γ(4− s)Γ(3− s)
.

The result then follows from Proposition 7.2, Definition (3.1) and Langlands’ functional equation.

�

For the rest of this section, we focus on proving Proposition 7.2. We first introduce some notation.

Let x, y be indeterminates, s be a complex parameter, and ` be a fixed positive even integer. Also,

set

f+ = x+ y and f− = x− y.

We have

Span
({
x2`−2jy2j + x2jy2`−2j : 0 ≤ j ≤ `/2

})
= Span

({
f2`−2j

+ f2j
− + f2j

+ f2`−2j
− : 0 ≤ j ≤ `/2

})
:= Veven,

say. We think of Veven as sitting inside the space V` = Sym2`(C2) (see Section 3.1). We will define

a few operators on the space Veven. For a nonnegative integer k and z ∈ C, let

(z)k = z(z + 1)(z + 2) · · · (z + k − 1).

This is the so-called Pochhammer symbol.

For a complex number s, we define [s;x, y] as the diagonal operator on Veven given by

x2`−2jy2j + x2jy2`−2j 7→

(
1−s

2

)
| `
2
−j|(

1+s
2

)
| `
2
−j|

(
x2`−2jy2j + x2jy2`−2j

)
for each 0 ≤ j ≤ `/2. Similarly, we define [s; f+, f−] as the diagonal operator on Veven that is given

by

f2`−2j
+ f2j

− + f2j
+ f2`−2j
− 7→

(
1−s

2

)
| `
2
−j|(

1+s
2

)
| `
2
−j|

(
f2`−2j

+ f2j
− + f2j

+ f2`−2j
−

)
for each 0 ≤ j ≤ `/2.
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Proof of Proposition 7.2. In our computation of the image of f`(g, s) under the intertwining op-

erator M(w, s), we will use the so-called cocycle property which was given in Theorem 4.2.2 in

[18]. This theorem implies that M(w, s) can be viewed as a composition of intertwiners that are

associated to simple reflections.

To apply the cocycle property, we record how the simple reflections in the product w = [412434214]

move the character λs = (s−3)r1+(s−2)r2+(−1)r3 around, and how the associated one-dimensional

intertwining operators act on the inducing section f`(g, s). This is provided in the table below.

Table 1. Intertwining operators

Simple reflection Intertwiner New character

[4]
Λ(s− 1)

Λ(s)
[s− 1; f+, f−] (s− 3)r1 + (−1)r2 + (s− 2)r3

[1]
Λ(s− 2)

Λ(s− 1)
[s− 2;x, y] (−1)r1 + (s− 3)r2 + (s− 2)r3

[2]
Λ(s− 2)

Λ(s− 1)
[s− 2;x, y] (−1)r1 + (s− 3)r2 + (2− s)r4

[4]
Λ(s− 3)

Λ(s− 2)
[s− 3; f+, f−] (−1)r1 + (s− 3)r3 + (2− s)r4

[3]
Λ(2s− 5)

Λ(2s− 4)
[2s− 5;x, y] (−1)r1 + (2− s)r3 + (s− 3)r4

[4]
Λ(s− 2)

Λ(s− 1)
[s− 2; f+, f−] (−1)r1 + (2− s)r2 + (s− 3)r4

[2]
Λ(s− 3)

Λ(s− 2)
[s− 3;x, y] (−1)r1 + (2− s)r2 + (3− s)r3

[1]
Λ(s− 3)

Λ(s− 2)
[s− 3;x, y] (2− s)r1 + (−1)r2 + (3− s)r3

[4]
Λ(s− 4)

Λ(s− 3)
[s− 4; f+, f−] (2− s)r1 + (3− s)r2 + (−1)r3

The notation in this table has the following meaning, as we explain by an example. Set

λ′s = (s− 3)r1 + (−1)r2 + (s− 2)r3.

When we apply the intertwining operator associated to the reflection [4] to the inducing section

f`(g, s), we obtain the unique Kf -spherical, K∞-equivariant element of Ind(δ
1/2
B λ′s), whose value at

g = 1 is
Λ(s− 1)

Λ(s)
[s− 1; f+, f−](x`y`).

Denote the resulting inducing section by f ′`(g, s), and set

λ′′s = (−1)r1 + (s− 3)r2 + (s− 2)r3.
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Then, if we apply the intertwining operator associated to the reflection [1] to f ′`(g, s), then we

obtain the unique Kf -spherical, K∞-equivariant element of Ind(δ
1/2
B λ′′s), whose value at g = 1 is(

Λ(s− 2)

Λ(s− 1)
[s− 2;x, y] ◦ Λ(s− 1)

Λ(s)
[s− 1; f+, f−]

)
(x`y`).

Note that the terms in Table 1 that are in the form of ratios of Λ-values follow from a formula of

Gindikin and Karpelevich, while the terms such as [s − 1; f+, f−] and [s − 2;x, y] arise due to the

fact that our inducing section is not spherical at the archimedean place. We postpone providing a

complete justification of the operators in Table 1 until the next section. Granted this, the Λ-values

multiply to
Λ(s− 3)2Λ(s− 4)Λ(2s− 5)

Λ(s− 1)2Λ(s)Λ(2s− 4)

(see also Table 12 in [17]). The other terms give the polynomial intertwiner

Mpoly(s) = [s− 4; f+, f−] ◦ [s− 3;x, y]2 ◦ [s− 2; f+, f−] ◦ [2s− 5;x, y]

◦ [s− 3; f+, f−] ◦ [s− 2;x, y]2 ◦ [s− 1; f+, f−].
(7.1)

The proposition now follows from the following proposition.

Proposition 7.3. Let Mpoly(s) be as in (7.1). We have

Mpoly(s)x`y` = cpoly,`(s)x
`y`,

where

cpoly,`(s) =
(s− 3)(s− 4)2(s− 5)2 · · · (s− `− 2)2(s− `− 3)

(s+ `− 2)(s+ `− 3)2(s+ `− 4)2 · · · (s− 1)2(s− 2)

=
Γ(s− 2)Γ(s− 3)Γ(s− 2)Γ(s− 1)

Γ(s− `− 3)Γ(s− `− 2)Γ(s+ `− 1)Γ(s+ `− 2)
.

In other words, the above proposition proves that x`y` is an eigenvector for the operator Mpoly(s)

with the eigenvalue cpoly,`(s). This proposition will be proved in Section 7.2.

7.1. The root intertwiners. The purpose of this section is to explain the presence of the terms that

appear in the “Intertwiner” column of Table 1. We require the following lemma.

Lemma 7.4. Let B denote the upper-triangular Borel of SL2. For θ ∈ R, set kθ =
(

cos θ − sin θ
sin θ cos θ

)
.

Suppose that fSL2,j(g, s) is the section in Ind
SL2(R)
B(R) (δ

1/2
B δ

s/2
B ) that satisfies

fSL2,j

(
gkθ, s

)
= eijθfSL2,j(g, s)

for all g ∈ SL2(R) and kθ ∈ SO(2) as above. Then∫
R
fSL2,j

(( 0 −1

1 0

)( 1 x

0 1

)
g, s

)
dx = ij

ΓC(s)

ΓR(s− j + 1)ΓR(s+ j + 1)
fSL2,j(g,−s).

If j is even, then this becomes∫
R
fSL2,j

(( 0 −1

1 0

)( 1 x

0 1

)
g, s

)
dx =

ΓR(s)

ΓR(s+ 1)

(
1−s

2

)
|j/2|(

1+s
2

)
|j/2|

fSL2,j(g,−s).
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Proof. The proof is standard. To give some details anyway, we consider the case g = 1. Note that(
0 −1
1 0

)
( 1 x

0 1 ) =
(

1 −x(x2+1)−1

0 1

)(
(x2+1)−1/2 0

0 (x2+1)1/2

)(
x(x2+1)−1/2 −(x2+1)−1/2

(x2+1)−1/2 x(x2+1)−1/2

)
.

From this, we obtain∫
R
fSL2,j

(( 0 −1

1 0

)( 1 x

0 1

)
, s

)
dx =

∫
R

(x2 + 1)−(s+1)/2

(
x+ i

(x2 + 1)1/2

)j
dx

=

∫
R

(x+ i)−(s−j+1)/2(x− i)−(s+j+1)/2 dx.

This last integral is evaluated in [11, p. 279], which gives

ij21−sπ
Γ(s)

Γ( s−j+1
2 )Γ( s+j+1

2 )
= ij

ΓC(s)

ΓR(s− j + 1)ΓR(s+ j + 1)
.

Note that when j is even,

ΓC(s)

ΓR(s− j + 1)ΓR(s+ j + 1)
=

ΓR(s)ΓR(s+ 1)

ΓR(s− j + 1)ΓR(s+ j + 1)

=
ΓR(s)

ΓR(s+ 1)

ΓR(s+ 1)ΓR(s+ 1)

ΓR(s− j + 1)ΓR(s+ j + 1)
,

and

ΓR(s+ 1)ΓR(s+ 1)

ΓR(s− j + 1)ΓR(s+ j + 1)

=
Γ((s+ 1)/2)2

Γ((s− j + 1)/2)Γ((s+ j + 1)/2)
=

(
s+1−|j|

2

)
|j/2|(

s+1
2

)
|j/2|

= (−1)j/2

(
1−s

2

)
|j/2|(

1+s
2

)
|j/2|

.

The result then follows. �

Before applying the above lemma, we note the following calculations. For each positive root α,

let ϕα : SL2 → G be the root SL2, determined by a pinning of G. This pinning is assumed to be

compatible with the Cartan involutions, i.e., θ(ϕα(g)) = ϕα( tg−1). On the Lie algebra level, the

root sl2’s give rise to the elements dϕα
((

0 1
−1 0

))
in the Lie algebra of G. We list these elements

now.

• α1 = r1 − r2, b1 ∧ b−2 + b−1 ∧ b2 = u1 ∧ u2 − u−1 ∧ u−2 = − i
2

(h+ + h′+ + h− + h′−)

• α2 = r3 + r4, b3 ∧ b4 + b−3 ∧ b−4 = v1 ∧ v2 + v−1 ∧ v−2 = − i
2

(h+ − h′+ − h− + h′−)

• α3 = r3 − r4, b3 ∧ b−4 + b−3 ∧ b4 = v1 ∧ v2 − v−1 ∧ v−2 = − i
2

(h+ − h′+ + h− − h′−)

• α4 = r2 − r3, b2 ∧ b−3 + b−2 ∧ b3 = u2 ∧ v1 − u−2 ∧ v−1 = − i
2

(−H+ − H ′+ + H− + H ′−)

where H? = e? + f? for ? ∈ {+, ′+,−, ′−}.

By combining these calculations with Lemma 7.4, we arrive at the following proposition. Let

wj ∈ N(T )Q∩(KfK) be the simple reflection in the Weyl group that corresponds to the simple root

αj . The proposition computes the rank one intertwining operator associated to wj on the inducing
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sections that arise in Table 1. In the proposition, the group Uαj is the unipotent subgroup of G

that corresponds to the simple root αj .

Proposition 7.5. Suppose that λ = α1r1 + α2r2 + α3r3 + α4r4 is an unramified character of T (A).

Let f ∈ Ind
G(A)
B(A)(δ

1/2
B λ) be V`-valued such that f is K-equivariant, Kf -invariant, and f(1) ∈ Veven.

Set s = 〈α∨j , λ〉, where α∨j is the coroot associated to αj. If s > 1, then the integral

M(wj)f(g) =

∫
Uαj (A)

f(w−1
j xg) dx

is absolutely convergent. Moreover, the value M(wj)f(g) is the unique V`-valued, K-equivariant,

Kf -invariant element of Ind
G(A)
B(A)(δ

1/2
B wj(λ)), and its value at g = 1 is

M(wj)f(1) =


Λ(s)

Λ(s+ 1)
[s;x, y]f(1) if j = 1, 2, 3,

Λ(s)

Λ(s+ 1)
[s; f+, f−]f(1) if j = 4.

Proof. The proof is standard except the computation of the value of M(wj)f(g) at g = 1. We

explain the case j = 1 as the other cases are similar. To evaluate M(w1)f(1), we use a pinning of

G to pull back the calculation to SL2. Thus, we assume that ϕα1 : SL2 → G is compatible with the

integral structures, the Cartan involution, and that it satisfies the properties

ϕ1

( 0 1

−1 0

)
= w1 and ϕ1

( 1 ∗
0 1

)
= Uα1 .

We can also assume that

dϕ1

( 0 1

−1 0

)
= b1 ∧ b−2 + b−1 ∧ b2.

Then we have

M(w1)f(1) =

∫
A
f

(
ϕ1

( 0 1

−1 0

)( 1 x

0 1

))
dx.

The function f ◦ ϕ1 on SL2 is an element of the induction space corresponding to δ
(s+1)/2
B , as in

Lemma 7.4. The integrals over the finite places give ζ(s)
ζ(s+1) , as standard. The computation of the

integral over R follows from the fact that dϕ1(
(

0 1
−1 0

)
) acts on x2`−2jy2j the same way as − i

2h
−
` ,

which acts by −i(`− 2j). The result thus follows from Lemma 7.4. �

The above proposition yields the intertwining operators that appear in Table 1.

7.2. The polynomial intertwiner. The purpose of this section is to prove Proposition 7.3, from

which Proposition 7.2 follows. The proof of Proposition 7.3 requires the following two lemmas.

Lemma 7.6. Let u, v be variables and w be a complex parameter. Also, put

Fw(u, v) = (1− 2u− 2v + (u− v)2)−w.

Then

Fw(u, v) = (1− 2u− 2v + (u− v)2)−w =
∑
j,k≥0

pj,k(w)
ujvk

j!k!
,
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where

pj,k(w) =
Γ(2w + j + k)Γ(w + j + k + 1/2)Γ(w + 1/2)

Γ(2w)Γ(w + k + 1/2)Γ(w + j + 1/2)
.

Proof. First, note that the pj,k(w) are polynomials in w. To see this, one uses the functional

equation for the Gamma function, that is, Γ(s + 1) = sΓ(s). Now, if the polynomials pj,k(w) are

indeed the Taylor coefficients of Fw(u, v), then these polynomials must satisfy the expression

pj,k(w − 1) = pj,k(w)− 2jpj−1,k(w)− 2kpj,k−1(w) + j(j − 1)pj−2,k(w)

− 2jkpj−1,k−1(w) + k(k − 1)pj,k−2(w).
(7.2)

This relationship comes from comparing both sides of the identity

(1− 2u− 2v + u2 − 2uv + v2)

∑
j,k

pj,k(w)
ujvk

j!k!

 = Fw−1(u, v) =
∑
j,k

pj,k(w − 1)
ujvk

j!k!
.

Now, we have two claims:

(i) One can verify (7.2) directly.

(ii) Combined with the fact that the pj,k(w) are polynomials, (7.2) implies the lemma.

For the proof of the first claim, we again use the functional equation Γ(s+ 1) = sΓ(s) and relate

the polynomials pj,k(w) to pj,k(w − 1). For example, we obtain

pj,k(w) =
(2w − 2 + j + k)(2w − 1 + j + k)(w + j + k − 1/2)(w − 1/2)

(2w − 2)(2w − 1)(w + j − 1/2)(w + k − 1/2)
pj,k(w − 1).

One can obtain similar expressions relating pj−1,k(w), pj−1,k−1(w), ... to pj,k(w − 1). Thus the

identity in (7.2) becomes an identity for rational functions of w, j, k, which one can then verify

directly.

For the proof of the second claim, note that the Taylor coefficients of Fw(u, v) are necessarily

polynomials in w. Thus, to see that they are equal to pj,k(w), it suffices to check that they are equal

at infinitely many integers. But (7.2) allows one to induct, and thus verify the Taylor expansion of

Fw(u, v) for all negative integers w.

This completes the proof of the lemma. �

Lemma 7.7. Let f+ = x+ y and f− = x− y as before. Then we have

(i) ([s− 1;x, y] ◦ [s; f+, f−]) (x`y`) =
c′(s)

2`
f `+f

`
−,

(ii) ([s− 1; f+, f−] ◦ [s;x, y]) (f `+f
`
−) = 2`c′(s)x`y`,

where we set

c′(s) =
(s− `)(s− `+ 2) · · · (s− 4)(s− 2)

(s+ 1)(s+ 3) · · · (s+ `− 3)(s+ `− 1)
.

Proof. Part (ii) follows from part (i) by switching the roles of x, y with f+, f−. We now prove part

(i). Note that x = f++f−
2 and y = f+−f−

2 , so 4xy = f2
+ − f2

−. Thus

(7.3) 4`
x`y`

`!
=
∑̀
j=0

(−1)j
f2`−2j

+ f2j
−

(`− j)!j!
.
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Also, observe that

(7.4)

(
1−s

2

)
| `2−j|(

1+s
2

)
| `2−j|

= (−1)
`
2
−j Γ

(
1−s

2 − ( `2 − j)
)

Γ
(

1−s
2 + ( `2 − j)

)
Γ
(

1−s
2

)2 .

Let w = 1−s−`
2 . Then by combining (7.3) and (7.4), we obtain

(−1)
`
2 4` [s; f+, f−]

x`y`

`!
=

Γ(w)2

Γ(w + `/2)2

`/2∑
j=0

Γ(w + `− j)Γ(w + j)

Γ(w)2

f2`−2j
+ f2j

−
(`− j)!j!

.

We sum Γ(w+`/2)2

Γ(w)2
times the right-hand side over non-negative even integers ` and use the identity∑

k≥0

Γ(w + k)

Γ(w)

zk

k!
= (1− z)−w,

to find that

Γ(w)2

Γ(w + `/2)2
(1− f2

+)−w(1− f2
−)−w =

Γ(w)2

Γ(w + `/2)2
(1− 2(x2 + y2) + (x2 − y2)2)−w

=
Γ(w)2

Γ(w + `/2)2

∑
j,k≥0

pj,k(w)
x2jy2k

j!k!
.

In the first equality, we used the relations f+f− = x2 − y2 and f2
+ + f2

− = 2(x2 + y2). The second

equality follows from Lemma 7.6.

Note that if j + k = `, then

[s− 1;x, y]
(
x2jy2k + x2ky2j

)
= (−1)`/2+kΓ(w + j + 1

2)Γ(w + k + 1
2)

Γ(w + `+1
2 )2

(
x2jy2k + x2ky2j

)
.

Then

4` ([s− 1;x, y] ◦ [s; f+, f−])

(
x`y`

`!

)
=

Γ(w)2

Γ(w + `/2)2

∑
j,k≥0,
j+k=`

(−1)kpj,k(w)
Γ(w + j + 1/2)Γ(w + k + 1/2)

Γ(w + (`+ 1)/2)2

x2jy2k

j!k!
.

By Lemma 7.6,

pj,k(w)
Γ(w + j + 1/2)Γ(w + k + 1/2)

Γ(w + (`+ 1)/2)2
=

Γ(2w + `)Γ(w + `+ 1/2)Γ(w + 1/2)

Γ(2w)Γ(w + (`+ 1)/2)2
.

Then

4`
(
[s− 1;x, y] ◦ [s; f+, f−]

)(x`y`
`!

)
=

Γ(w)2Γ(2w + `)Γ(w + `+ 1/2)Γ(w + 1/2)

Γ(w + `/2)2Γ(w + (`+ 1)/2)2Γ(2w)

(x2 − y2)`

`!
.

Here, x2 − y2 = f+f−. Thus, rewriting the above equation in terms of s gives the statement in the

lemma. Indeed, the product of the gamma functions can be written as

Γ(2w + `)

Γ(2w)
· Γ(w + `+ 1/2)

Γ(w + (`+ 1)/2)
· Γ(w + 1/2)

Γ(w + (`+ 1)/2)
· Γ(w)2

Γ(w + `/2)2
,
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where each of these individual ratio of gamma functions is a rational function of w. We find that

this rational function equals

2`
(2w + `+ 1)(2w + `+ 3) · · · (2w + 2`− 1)

(2w)(2w + 2)(2w + 4) · · · (2w + `− 2)
= 2`

(s− `)(s− `+ 2) · · · (s− 6)(s− 4)(s− 2)

(s+ 1)(s+ 3) · · · (s+ `− 3)(s+ `− 1)
.

The above is 2`c′(s). This completes the proof of part (i) and hence the lemma. �

Proof of Proposition 7.3. The proposition now follows easily from the factorization of Mpoly(s) in

(7.1) and Lemma 7.7. �

8. Archimedean zeta integral

In this section, we explicitly compute the archimedean integral that is part of the Rankin-Selberg

integral. Below, we use the symbol ∼ to denote equality up to a nonzero constant that may or may

not depend on the weight ` of the modular form. Also, the constant that is implied by ∼ may be

different at each occurrence of the symbol.

Recall that in Section 3.3 we defined

(8.1) I∗(s; `) = 2sΓR(s− 1)ΓC(s+ `− 1)ΓC(s+ `− 2)I(s; `),

where

I(s; `) =

∫
N0,E(R)\G2(R)

{f`(γ0g, s),Wχ(g)}K dg.

Here Wχ is the generalized Whittaker function. This means that Wχ : G2(R) → V` is a smooth

function of moderate growth which satisfies the condition

Wχ(ngk) = χ(n)k−1 ·Wχ(g) for all n ∈ N(R), k ∈ K and g ∈ G2(R),

and we have D`Wχ = 0 for the Schmid operator D` (see [14, p. 10]). Also, the braces { , }K denote

the K-equivariant pairing on V` that is unique up to a scalar multiple.

Our goal is to prove the following theorem.

Theorem 8.1. We have

I∗(s; `) ∼ ΓR(s− 1)ΓC(s+ `− 3)ΓC(s+ `− 2)ΓC(s+ 2`− 3).

Note that by (8.1), it suffices to compute the integral I(s; `). In Section 6 of [14], an expression

for this integral was found. To state that result, we define the function

(8.2) J ′(s) = |q(vE)|−s
∫
V ∗
|q(v)|se−|〈v,r0(i)〉|2 dV

|q(v)|
.

Here, V ∗ is the GL2(R)-orbit that consists of the binary cubics that split over R and dV denotes the

Haar measure on V ∗. Note that V ∗ is a subset of W , which is the space of binary cubic forms. Also,

vE = (0, 1
3 ,

1
3 , 0) corresponds to the binary cubic x2y + xy2, and r0(i) = (1,−i,−1, i) corresponds

to the binary cubic (x− iy)3. The quartic form q and the symplectic pairing 〈 , 〉 are as defined in

Section 2.4.

Our first step in computing I(s; `) is proving the following result.
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Proposition 8.2. We have

I(s; `) ∼ π−s Γ(s+ 2`− 3)Γ(s+ `− 2)Γ((s+ `− 3)/2)2

Γ((s+ `)/2)Γ(s+ `− 3)Γ((3s+ 3`− 7)/2)
J ′
(
s+ `− 2

2

)
.

Proof. Let χ′ denote the archimedean part of the character ψ(〈vE , n〉), so that χ′(n) = e2πi〈vE ,n〉.

In the notation of [14], compared with the third displayed equation on page 30 of [14], we have

I(s; `) =

∫
GL2(R)

∫
(N0,E\N)(R)

| det(m)|−3e2πi〈vE ,n〉

||x(n,m)||(s+`)
{prK(x(n,m))`,Wχ′(m)}K dn dm.

Here, we need to note that in loc cit, the function

I(s,Φ) =

∫
N0,E(R)\GL1(R)×G2(R)

|t|s{Φ(tg−1ṽE),Wχ(g)}K dg

is used instead. The Γ((s+ `)/2) in the expression for I(s,Φ) in loc cit has disappeared here since

I(s; `) is defined in terms of the flat section f`(γ0g, s) whereas I(s,Φ) in [14] was defined in terms

of a section that takes the value Γ((s+ `)/2) at g = 1.

Now, by following the same argument as in [14, p. 30], we obtain

I(s; `) ∼
∫

GL2(R)×(N0,E\N)(R)

| det(m)|s+`−2e2πiβ

(|α|2 + |β|2)(s+`)/2

(∑
j

(
`

j

)
(iβ)`−j |α|jK(j)

0 (2π|α|)
)
dn dm.

Using the change of variables β 7→ (2π)−1β and m 7→ (2π12)−1m, as α depends on m, we find that

I(s; `) ∼ (2π)−s
∫

GL2(R)×(N0,E\N)(R)

|det(m)|s+`−2eiβ

(|α|2 + |β|2)(s+`)/2

∑
j

(
`

j

)
(iβ)`−j |α|jK(j)

0 (|α|)

 dn dm.

Consequently, I(s; `) ∼ (2π)−sΓ((s + `)/2)−1I(s,Φ). The result now follows from the first part of

Theorem 6.2 in [14]. �

Remark. In [14], the factor |q(vE)|−s was mistakenly omitted in the first part of Theorem 6.2. It

should first appear in the fifth displayed equation on page 32, as |det(g)|2 = |q(vE)|−1|q(v)|, and

then be carried over to the expression for I(s,Φ) in the first part of Theorem 6.2.

As our second step, we now prove

Proposition 8.3. Let J’(s) be as in (8.2). We have

J ′(s) ∼ 2−6sΓ(2s)
Γ(3s− 1/2)

Γ(s+ 1/2)3
.

Proof. To compute J ′(s), it suffices to integrate over those elements of V ∗ which have nonzero

leading coefficients since the set of such elements of V ∗ has co-measure zero. Such a binary cubic

can be written as

t(w − r1z)(w − r2z)(w − r3z)

for t, r1, r2, r3 ∈ R. To compute the integral J ′(s), we make the variable change

• a = t

• b = −t(r1 + r2 + r3)
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• c = t(r1r2 + r2r3 + r3r1)

• d = −tr1r2r3.

The Jacobian of this transformation equals

∂(a, b, c, d)

∂(t, r1, r2, r3)
=

∣∣∣∣∣∣∣∣∣
1 0 0 0

∗1 t t t

∗2 t(r2 + r3) t(r1 + r3) t(r1 + r2)

∗3 tr2r3 tr1r3 tr1r2

∣∣∣∣∣∣∣∣∣ = ±t3(r1 − r2)(r2 − r3)(r3 − r1),

where ∗1, ∗2, ∗3 denote some real numbers. Note that we have

q(w2z + wz2)−1q(t(w − r1z)(w − r2z)(w − r3z)) = t4(r1 − r2)2(r2 − r3)2(r3 − r1)2.

By combining this with the change of variables, we obtain

J ′(s) =

∫
t,r1,r2,r3

t4s−4e−t
2(1+r21)(1+r22)(1+r23)

∏
1≤i<j≤3

|ri − rj |2s−2 ∂(a, b, c, d)

∂(t, r1, r2, r3)
d(t, r1, r2, r3)

=

∫
t,r1,r2,r3

t4s−1e−t
2(1+r21)(1+r22)(1+r23)

∏
1≤i<j≤3

|ri − rj |2s−1 d(t, r1, r2, r3)

∼Γ(2s)

∫
r1,r2,r3

|1 + r2
1|−2s|1 + r2

2|−2s|1 + r2
3|−2s

∏
1≤i<j≤3

|ri − rj |2s−1 d(r1, r2, r3).

The integral on the last line is a special case of the Selberg integral. From (1.19) in [3] with

α = β = 2s, γ = s− 1/2 and n = 3, it follows that

J ′(s) ∼ 2−6sΓ(2s)

2∏
j=0

Γ(4s− 1− (2 + j)(s− 1/2))Γ(1 + (j + 1)(s− 1/2))

Γ(2s− j(s− 1/2))2Γ(s+ 1/2)

= 2−6sΓ(2s)
Γ(3s− 1/2)

Γ(s+ 1/2)3
.

�

Proof of Theorem 8.1. It immediately follows from Proposition 8.3 that

J ′
(
s+ `− 2

2

)
∼ 2−3s−3`+6Γ(s+ `− 2)

Γ((3s+ 3`− 7)/2)

Γ((s+ `− 1)/2)3
.

By combining this with Proposition 8.2, we obtain

I(s; `) ∼ (8π)−s
Γ(s+ 2`− 3)Γ(s+ `− 2)2Γ((s+ `− 3)/2)2

Γ(s+ `− 3)Γ((s+ `− 1)/2)3Γ((s+ `)/2)
.

Then by (8.1),

I∗(s; `) = 2sΓR(s− 1)ΓC(s+ `− 1)ΓC(s+ `− 2)I(s; `)

∼ (4π)−sΓR(s− 1)ΓC(s+ `− 1)ΓC(s+ `− 2)

× Γ(s+ 2`− 3)Γ(s+ `− 2)

Γ((s+ `− 1)/2)Γ((s+ `)/2)

Γ(s+ `− 2)Γ((s+ `− 3)/2)2

Γ(s+ `− 3)Γ((s+ `− 1)/2)2
.
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Further by using the duplication formula

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z + 1

2

)
,

we find that

I∗(s; `) ∼ ΓR(s− 1)ΓC(s+ `− 1)ΓC(s+ `− 2)

× ΓC(s+ 2`− 3)ΓC(s+ `− 2)

ΓR(s+ `− 1)ΓR(s+ `)

ΓC(s+ `− 2)ΓR(s+ `− 3)2

ΓC(s+ `− 3)ΓR(s+ `− 1)2

= ΓR(s− 1)ΓC(s+ `− 3)ΓC(s+ `− 2)ΓC(s+ 2`− 3).

This completes the proof. �

9. Proofs of the Main Results

In this short section, we combine our result on the archimedean integral with our results on other

local integrals Ip(s) and complete the proofs of our main results.

Proof of Theorem 1.1. In Theorem 7.1, we proved that E∗` (g, s) = E∗` (g, 5− s). We will now show

that

(9.1) I`(ϕ, s) ∼ aϕ(Z3)Λ(π,Std, s− 2),

where ∼ denotes equality up to a constant and

I`(ϕ, s) =

∫
G2(Q)\G2(A)

{ϕ(g), E∗` (g, s)}K dg.

as in Section 1.1. Note that

E∗` (g, s) = 2sζ(s− 1)2ζ(2s− 4)ΓR(s− 1)ΓC(s+ `− 1)ΓC(s+ `− 2)E(g,Φf , s).

where E(g,Φf , s) is as defined in (3.2). Also by Theorem 8.1,

I∗(s; `) ∼ ΓR(s− 1)ΓC(s+ `− 3)ΓC(s+ `− 2)ΓC(s+ 2`− 3).

Taking into account the normalization of the Eisenstein series E∗` (g, s), (9.1) follows directly from

Theorem 3.2 and Theorem 8.1 using the technique of “non-unique models”, also known as “new-way

(Eulerian) integral”, which is explained in [1], [10] and [12].

By combining (9.1) with the above functional equation of E∗` (g, s), we complete the proof of the

theorem.

�

Proof of Corollary 1.2. This follows from Theorem 3.2 exactly as in Section 5.9 of [14]. �
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