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Abstract. We consider the parabolically induced representations of
the symmetric space SO4\G2 over a p-adic field using the geometric
lemma when the inducing parabolic subgroup is either Pβ or Pα. Using
an explicit description of the embedding of G2 in GL8, we characterize
precisely the induced representations which are (SO4, χ)-distinguished,
given a certain type of involutions is chosen.
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1. Introduction

The aim of this paper is to identify certain parabolically induced com-
plex representations of the exceptional group G2(F ), over a p-adic field F ,
that admit a linear functional invariant under the special orthogonal group
SO4(F ).

In the last two decades, motivated by the study of period integrals, many
works [7, 23, 22] have described the distinguished representations of various
classical groups, for instance the general linear groups and the unitary groups
by their symplectic, unitary or general linear subgroups. Around the same
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time, the far-reaching Sakellaridis-Venkatesh conjectures have reignited in-
terest and gave further motivations in the description and classification of
representations of p-adic symmetric spaces (as a particular instance of spher-
ical varieties) G/H.

In this realm of research, very little has been understood regarding excep-
tional groups, a recent work of Gan-Gomez [8], dealt with many low-rank
varieties, including G2/SL3 (a spherical variety which is not a symmet-
ric space). Their work, however, does not deal with a precise description
or classification of representations of G2(F ) which might be distinguished
by SL3(F ). Indeed, such classification would require to use the geometric
lemma method (also known as ”orbit method” since it relies on analysing
consecutively a set of parabolic orbits). Our paper constitutes the first in-
stance of its application (implementable if the quotient is a symmetric space,
or in the Galois case) to an exceptional group. The main tools in our inves-
tigation have been exposed in [20]. The drawback of our approach is that it
allows us to only deal with parabolically induced representations.

The strategy described in the paper of Offen [20] consists in reducing
the question of distinction of the induced representations of G by H to
a question of distinction at the level of a subgroup Lx ⊆ M associated
to a representative x for each parabolic orbit. It involves computing the
relevant subgroups Qx = Lx o Ux and associated modular character. To do
so, since none of the patterns of classical groups were reproducible in our
context, we have used the mathematical software SageMath and an explicit
embedding of G2 into GL8. In this paper, we deal with the case of the two
maximal parabolic subgroups Pβ and Pα of G2 , where β stands for the long
root. Following a method of [10], we first describe the twelve or thirteen
double cosets’ representatives and therefore will study as many parabolic
orbits. To implement the subsequent steps in SageMath, we need to write
an explicit expression of the Levi subgroup Mβ (resp. Mα) using Bruhat
cells, identify the admissible orbits, and verify their closedness or openess.
We have also identified the matching elements in Wβ\W/Wβ for each orbit
representative and the result is given in the Appendix. Finally, the results
where we identified the Levi subgroups L = M∩wxMw−1

x , for each matching
element wx, and also implemented various computations to check properties
of the orbits (see in [20]) using a modified version of the orbit representatives
have been included in the form of codes. A better strategy was eventually
found using a stricter definition of admissibility (see Definition 3.5), already
offered in the literature [21]. The software SageMath was used to do the
matching of double coset representatives with elements in Wβ\W/Wβ, to
check the (strict)-admissibility, the openess and closedness conditions, and
deduce what would be the subgroups L,Lx, Ux.

Our main results are the following:
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Theorem (Closed orbit). Let χ be a character of SO4(F ). It is a quadratic
character of F×. It can be seen as a character of GL2 (those are given
by χ ◦ det for a quasi-character χ of F×). Let Pβ (resp. Pα) denote the
maximal parabolic corresponding to the root β (resp. α). The parabolic
induced representations of G2 which are (SO4, χ)-distinguished include the
following representations:

• The induction from Pβ to G2 of the reducible principal series

I(χδ
1/2
Pβ
|.|−1/2 ⊗ |.|) of GL2.

• The induction from Pα to G2 of the reducible principal series

I(χδ
1/2
Pα
|.|1/2 ⊗ χδ1/2

Pα
|.|−1/2)of GL2.

• The induced representation IG2
Pβ

((χ ◦ det)δ
1/2
Pβ

)

• The induced representation IG2
Pα

((χ ◦ det)δ
1/2
Pα

).

Theorem (Distinguished induced parabolic representations and admissible
orbits). We take the involution θ defining SO4(F ) = Gθ

2(F ) to be of the
form θti for i ∈ {0, 1, 2}, as well as the expressions of the Levi subgroups
as defined in the Subsection 7.1. The parabolically induced representations
from the parabolic subgroups Pβ or Pα of G2 distinguished by SO4 whose
linear forms arise from admissible, open or closed, orbits are necessarily of
the form given in the Theorems 8.2 and 8.3.

Our computations also reveal a mysterious and exciting phenomenon with
the open orbits which are parametrized by the number of quadratic exten-
sions E of F , see the Proposition 7.5.
The context of dealing with the split exceptional group G2 gives to this
paper its computational (via SageMath) nature. All our codes and Sage-
Math computation are available at the following link: https://github.

com/sarahdijols/G2SO4. It is worth mentioning that this software helps
us only to multiply many 8-dimensional matrices, but all these multiplica-
tions could be, in principle, done by hand. No programming skills are needed
to understand the codes available at this link. A byproduct of the strategy
developed in this work is to provide explicit expressions of the tori, roots
subgroups, and Levi subgroups of G2, which allow, for instance, to compute
the modulus for the maximal parabolic subgroups and the Borel of G2. We
believe these codes could be useful to the math community.

Here we briefly outline the contents of the paper. In Section 2, we estab-
lish notation and recall some basic definitions. Section 3 contains a review
of two key results proved by Offen in [20], and Section 4 provides some re-
sult on the distinguished representations that form the inducting data for
the representations of G2(F ) studied here. We study the structure of the
symmetric space G2(F )/SO4(F ) in Section 5; additional detail is provided
in Appendix A, where an embedding of G2(F ) into GL8(F ) is discussed. In
Section 6, we describe the double cosets and double cosets representatives,
while in Section 7, we study the orbits in G2(F )/SO4(F ) under the twisted

https://github.com/sarahdijols/G2SO4
https://github.com/sarahdijols/G2SO4
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action of standard parabolic subgroups of G2(F ). Finally, the main results
on SO4(F )-distinguished parabolically induced representations of G2(F ) are
stated and proved in Section 8.

We, finally, mention here that this paper considers only sufficient condi-
tions for distinction, as presented in the Propositions 7.1 and 7.2 of [20].
The necessary conditions which may involve using Proposition 4.1 in [20]
will be addressed, to the greatest extent possible, in our subsequent work.
The reader will notice that all the ingredients have been prepared to do so in
the form of codes, as the algorithm to compute the expressions for the sub-
groups Lx ⊂M and the relevant modular characters have been written and
tested (see the files ”delta-functions-Pb-Pa-min.ipynb” and ”delta-functions-
Q-x-clean(1).ipynb” in particular).

Acknowledgements. The author would like to express her gratitude to Steven
Spallone for communicating, in its entirety, the material in Appendix A on
the structure of G2 as the group of automorphisms of the Cayley algebra.
She also thanks Qing Zhang and David Ginzburg for giving her a few pre-
cious references and hints on G2, and Dipendra Prasad for some general
comments. She would like to warmly thank Arnab Mitra and Jerrod Smith
for many discussions on the method and on the earlier calculations done in
this work, and Jerrod Smith for his contribution to a few files in the code,
and to the organization of this paper. The author has benefited from very
good work conditions at the YMSC, Beijing, and at the MPIM, Bonn.

2. Notation and Preliminaries

Let F be a non-Archimedean local field of characteristic zero and odd
residual characteristic. Let OF be the ring of integers of F with prime ideal
pF . Fix a uniformizer $ of F ; note that pF = $OF . Let q be the cardinality
of the residue field kF = OF /pF . Let | · |F denote the normalized absolute
value on F such that |$|F = q−1. We write | · | for the usual absolute value
on the field C of complex numbers.

Let G = G(F ) be the F -points of a connected reductive group defined
over F . We let e denote the identity element of G. For any g ∈ G, we denote
the inner F -automorphism of G given by conjugation by g by Intg. That
is, Intg(x) = gxg−1 for all x ∈ G. Recall that the map Int : G → AutF (G)
given by g 7→ Intg is a group homomorphism. Moreover, ker(Int) = ZG is
the centre of G. Note that if g2 = e, then Intg is an involution, that is, an
order two automorphism. Indeed, if g2 = e, then for any x ∈ G

(Intg)
2(x) = Intg ◦ Intg(x) = g2xg−2 = exe = x,

and (Intg)
2 = IdG is the identity map on G. Observe that x ∈ G is fixed by

Intg if and only if x ∈ CG(g), where CG(g) is the centralizer of g in G.
All representations are over complex vector spaces. We will often abuse

notation and refer to a representation (π, V ) of G simply as π. We write
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1G : G→ C× for the trivial character of G, that is, 1G(g) = 1 for all g ∈ G.
We assume that all representations (π, V ) of G are smooth in the sense that
the stabilizer of any vector v ∈ V is an open subgroup of G. A character of
G is a one-dimensional smooth representation of G (not necessarily unitary).

Let P be a parabolic subgroup of G. Let N be the unipotent radical of
P , and let M be a Levi subgroup of P . Let δP : P → R>0 be the modular
character of P . Recall that δP (p) = |det Adn(p)|F for all p ∈ P , where
Adn denotes the adjoint action of P on the Lie algebra n of N [5]. Given
a smooth representation (σ,W ) of M , we denote the normalized parabolic

induction of σ along P by IGP (σ) = IndGP (δ
1/2
P ⊗ σ).

2.1. Distinguished representations. Let H be a closed subgroup of G, and
let χ be a character of H. Let (π, V ) be a smooth representation of G.

Definition 2.1. The representation (π, V ) is said to be (H,χ)-distinguished
if there exists a nonzero linear functional λ in HomH(π, χ).

If (π, V ) is (H,1H)-distinguished, then we will simply say that (π, V ) isH-
distinguished. The H-distinguished representations of G are precisely those
representations of G that are relevant to the study of harmonic analysis on
the quotientG/H. Indeed, given a nonzeroH-invariant linear functional λ in
HomH(π,1H) the linear transformation sending v ∈ V to the function ϕλ,v,
where ϕλ,v(g) = 〈λ, π(g−1)v〉 for all g ∈ G, defines an intertwining operator
from (π, V ) to the regular representation of G on the smooth complex valued
functions on G/H. Moreover, any such intertwining operator arises this
way. In studying distinguished parabolically induced representations it is
necessary to consider (H,χ)-distinguished representations at the level of the
inducing data.

The following elementary result is quite useful.

Lemma 2.2. Let (π, V ) be a representation of G. Suppose that π admits a
central character ωπ. Let χ be a character of H. If π is (H,χ)-distinguished,
then χ|H∩Z = ωπ|H∩Z .

Proof. Since π is (H,χ)-distinguished, there exists a nonzero linear func-
tional λ in HomH(π, χ). Let v ∈ V so that 〈λ, v〉 6= 0. Suppose that
z ∈ H ∩ Z. Then since λ is H-invariant and π has central character ωπ we
have that

χ(z)〈λ, v〉 = 〈λ, π(z)v〉 = 〈λ, ωπ(z)v〉 = ωπ(z)〈λ, v〉.

Therefore,

0 = (χ(z)− ωπ(z))〈λ, v〉

and since 〈λ, v〉 6= 0 it follows that χ(z) = ωπ(z). Therefore, the restriction
χ|H∩Z of χ to H∩Z agrees with the restricted central character ωπ|H∩Z . �
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3. Distinction for parabolically induced representations

Here we recall the general results of Offen [20] that we utilize below. We
use mostly the same notations as Offen.

Let G = G(F ) be the F -points of a connected reductive group G defined
over F . Let θ be an F -rational involution of G. Let H = Gθ(F ) be the
F -points of the θ-fixed set Gθ in G. Let X = {g ∈ G : gθ(g) = e}. Elements
of the set X are referred to as the θ-split elements in G. The set X carries
a G-action given by

(g, x) 7→ g · x = gxθ(g)−1

for all g ∈ G and x ∈ X. Of course, eθ(e) = e, so the identity element of G
lies in X. The stabilizer of e under the G-action on X is the subgroup H of
θ-fixed points. It follows that the map G→ X given by g 7→ g · e defines an
embedding of the symmetric space G/H in X as the G-orbit of the identity.

Let x ∈ X be a θ-split element of G. The F -rational automorphism θx of
G defined by

θx(g) = xθ(g)x−1 for all g ∈ G
is an involution. For any subgroup K of G let Kx = StabK(x) be the
stabilizer of x in K for the G action on X. Then H = Ge and Kx = Kθx

for any subgroup K of G and x ∈ X; however, K need not be θx-stable so
it is convenient to note that Kx = (K ∩ θx(K))θx .

We will assume that G is split over F . Let B be a Borel subgroup of
G with unipotent radical N . By [11, Lemma 2.4] there exists a θ-stable
maximal F -split torus T of G contained in B. We have that B = TN . A
parabolic subgroup P of G is standard if it contains the Borel subgroup B.
Suppose that P is a standard parabolic subgroup of G, then P admits a
unique Levi subgroup M that contains T . Let U be the unipotent radical of
P . We will always work with a standard Levi factorization P = MU with
T ⊆M . Let NG,θ(M) = {g ∈ G : M = gθ(M)g−1}.

Let χ be a character of H and let η ∈ G. Write χη
−1

for the character of

η−1Hη given by χη
−1

(h′) = χ(ηh′η−1) for all h′ ∈ η−1Hη.

The following proposition deals with the case of a closed orbit.

Proposition 3.1 (For instance Proposition 7.1 in [20]). Let χ be a character
of H. Let P = MU be a standard parabolic subgroup of G with unipotent
radical U and Levi factor M . Let (σ,W ) be a smooth representation of M .
Suppose that η ∈ G so that x = η · e ∈ NG,θ(M) and θx(P ) = P . If σ is

(Mx, δPxδ
−1/2
P χη

−1
)-distinguished, then IGP (σ) is (H,χ)-distinguished.

An analogous result whose proof relies on the work of Blanc and Delorme
[2] is the following:

Proposition 3.2 (Proposition 7.2 in [20]). Let P = MU be a standard par-
abolic subgroup of G with unipotent radical U and Levi factor M . Let
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(σ,W ) be a smooth representation of M with finite length. Suppose that
x ∈ (G · e)∩NG,θ(M) is an element of X such that P ∩ θx(P ) = M . If σ is

Mx-distinguished, then IGP (σ) is H-distinguished.

When applying the above results in Section 8, it will be important for us
to carefully choose representatives for the various P -orbits in X following
[20, Section 3]. We discuss the parabolic orbits in the setting of G = G2(F )
and H = SO4(F ) in Section 7.3.

Finally, let us recall here a recent related result of Prasad in [24] which
assures us of the existence of a generic unitary principal series representation
of G2(F ) distinguished by SO4(F ).

Proposition 3.3 (Proposition 11 in [24]). Let (G, θ) be a symmetric space
over a finite or a non-Archimedean local field k which is quasi-split over k,
thus there is a Borel subgroup B of G over k with B ∩ θ(B) = T , a maximal
torus of G over k. If k is finite, assume that its cardinality is large enough
(for a given G). Then there is an irreducible generic unitary principal series
representation of G(k) distinguished by Gθ(k).

3.1. The admissibility condition. Let us recall from [20] the existence of a
map from the set of parabolic orbits to the set of twisted involutions in the
Weyl group, which is, in general, neither injective nor surjective:

ιM : P\X → MWM ′τ
−1 ∩ S0(θ)

Here M ′ is also a standard Levi of G, and MWM ′ the set of all w ∈ W
that are left WM -reduced and right WM ′-reduced (a set in bijection with
P\G/P ′.

Let us notice first that various definitions of admissibility have been given
in the literature. In [20], admissibility is given by the following definition:

Definition 3.4. We say that x ∈ X (or P.x) isM -admissible ifM = wθ(M)w−1

where w = ιM (P.x).

Whereas in [21, Section 3.2.6], a stricter definition is used:

Definition 3.5 (Strict admissibility). x ∈ X (or P.x) is M -admissible if M =
xθ(M)x−1.

The terminology ”strict” here refers to the fact that this definition uses
directly an element x ∈ X rather than its corresponding element in the
Weyl group. Possibly, in the context of classical groups these two defini-
tions completely agree, but in our context the set of orbits which are strictly
admissible would be larger than the set of admissible orbits. Indeed as com-
puted in the code “admissibility-with-w”, only w0 = wαwβwαwβwα among
the four-elements set Wβ\W/Wβ is likely to be admissible.

Let us also remark that this condition is far from subsidiary since a re-
cent work of Offen and Matringe [17], in the case of p-adic Galois symmetric
spaces, implies that the admissibility condition should be enough for a given
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orbit to contribute to the distinction of the induced representation space.
Their result is expected to be extended to general symmetric spaces. It is
therefore important to be able to determine which representatives are M -
admissible. Notice, however, that our ad hoc expression for the Levi Mβ

possibly makes this verification a little loose.

Finally, to end this section, we add a comment which is best suited here:
In [20], Lemma 3.2 gives us that the representatives η of the double coset in
P\G/H can be chosen so that x ∈ Lw (for the w as defined in 3.4), where L
is a standard subgroup of M such that L = M ∩ θx(M). Assume this is the
case, and let us define Q to be the standard parabolic subgroup of G with
standard Levi subgroup L and unipotent radical V .
Then when we will choose our involution θ to be θt0 (see Section 5 and
Proposition 7.1 for an explanation of this notation), notice that the con-
ditions x ∈ NG,θ(M) in the Propositions 3.1 (and its equivalent for open
orbit, as presented in [20]) and the equality Mx = M are essentially the
same. Furthermore, in this case, L = M ∩ θx(M) and therefore L = M , so
that δQx = δMnUx . Therefore, in applying both of these propositions, when
θ = θt0 , we are reduced to the problems of identifying the representations
σ ∈ Rep(M) which are distinguished by a certain character of GL2(F ).

4. Inducing data

Both of the maximal (proper) parabolic subgroups of G2(F ) have Levi
factor isomorphic to GL2(F ). In this section, we collect information regard-
ing various distinguished representations of GL2 = GL2(F ). For represen-
tations of GL2(F )-distinguished by a maximal F -split torus, Section 3.1.3
of [21] provides an excellent summary.

Proposition 4.1. Let Z be the centre of GL2, and χ = χ0 ◦ det a character
of GL2 for χ0 a character of F×. A smooth indecomposable representation
π of GL2 is (GL2, χ)-distinguished if and only if it is one of the following
GL2-representations:

• π is isomorphic to χ (then π is irreducible).

• π is a reducible principal series of the form I(χ0|.|1/2 ⊗ χ0|.|−1/2).

Proof. Recall any character of GL2 factors through det. A smooth repre-
sentation π of GL2 is (GL2, χ)-distinguished if and only if χ occurs as a
quotient of π by a GL2-subrepresentation.
Here, we only justify the second element in the list, the other being obvious.
Let us denote Q(χ1, χ2) the one-dimensional quotient of the reducible princi-
pal series I(χ1⊗χ2), then Q(χ1, χ2) ∼= Span{χ} for χ = χ0 ◦det a character
of GL2(F ). Notice that Span{χ} is GL2-invariant subspace of I(χ1 ⊗ χ2)
where GL2(F ) acts via χ itself.

Given a character χ0 ◦ det : GL2(F ) → C×, where χ0 is a character of
F×, by a well-known description of GL2(F )-representations and reducibility
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point of principal series (see [3], Chapter 4 or [19] Proposition 1.1) it occurs
as an irreducible quotient of a representation of GL2(F ), if and only if the

representation is the reducible principal series I(χ1 ⊗ χ2) = IndGB(χ0|.|1/2 ⊗
χ0|.|−1/2) = IndGB(δ

1/2
B χ0 ⊗ χ0). �

Remark 4.2. In G2, we take β as the long root. Since we will consider
later the parabolic Pβ ⊂ G2, its Levi Mβ

∼= GL2 under the map t →
(α + β(t), α(t)) = (s, ts−1) for t, s ∈ F×. Then the induced principal series

takes the form I(χ0|.|−1/2⊗|.|), by Proposition 1.1 in [19]. This observation
can also be verified applying Lemma 2.2.

5. The exceptional group G2 and its symmetric subgroup SO4

Throughout the rest of this paper unless specified otherwise let G =
G2(F ) be the group of F -points of the split exceptional group G2, and
let H = SO4(F ) be the F -points the split special orthogonal group SO4. We
start with a lemma which offers an interesting geometrical interpretation of
the subgroup H, under certain conditions.

Lemma 5.1. Let us assume the characteristic of the field F is different from
2. Let C be a composition algebra of dimension 8, D a quaternion subalgebra,
a ∈ D⊥, with N(a) 6= 0. Assume N(a) = 1, then the quotient G2/SO4 is
the space of quaternionic subalgebras of C.

Proof. Let C be a composition algebra (in our context, of dimension 8 over
F , for instance the octonions, O), and D be a finite dimensional composition
subalgebra of C. Suppose a ∈ D⊥, with N(a) 6= 0 then D1 = D⊕Da and D1

is a composition subalgebra. The subalgebra D1 is said to be constructed
by doubling from D. The norm is given by N(x+ ya) = N(x)− λN(y), for
x, y in D, and λ = −N(a). For instance the split octonion (see the Appen-
dix) can be constructed from the split quaternion algebra by such doubling
process as in Proposition 1.5.1, [27].
Let now assume this composition C is an octonion algebra, and D a given
quaternion subalgebra. If one chooses a to be of norm one, then SO4 is
seen as the group GD = {σ ∈ G = Aut(C) : σ(D) = D} and the argumen-
tation goes as follows: Since GD preserves D, it also preserves the orthog-
onal complement aD. If σ ∈ GD acts trivially on aD, then GD fixes a so
σ(ua) = σ(u)a = ua and so σ acts trivially on D as well, so σ = 1. Thus
GD acts faithfully on aD (but not on D) and we have an injective homo-
morphism GD ↪→ O(4).

It remains to show that GD is of dimension six. To do so one observes
that the restriction map from GD → Aut(D) ∼= SO(D0)(F ) (here D0 are the
trace zero elements in D) is surjective by an application of Corollary 1.7.3
in [27], and let K be the kernel of this map. Proposition 2.2.1 in [27] tells us
that K (the algebraic group of F̄ -automorphisms of CF̄ that fix DF̄ elemen-
twise) is a 3-dimensional algebraic group and connected. The isomorphism
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between DF̄ and the unitary quaternions inducing those properties induces
the same isomorphism at the level of F . Let us remark that the isomor-
phism Aut(D) ∼= SO(D0)(F ) is due to [28], Theorem I.3.3, and using the
fact (see [29] Corollaries 7.1.2 and 7.1.4 for instance) that every F -algebra
automorphism of D is inner, i.e AutF (D) ∼= D×/F×. Thus GD fits inside
the exact sequence:

1→ K → GD → SO(D0)→ 1

In particular GD is connected and dimGD = 6, so GD ∼= SO4. This result is
true if D = H and D1 = O, and holds in a p-adic context with the additional
conditions given in the statement of this lemma. �

Remark 5.2. Notice that in our context, and to embed G2 into GL8 (see the
Appendix), we have chosen N(a) = −λ = −1. It would be interesting to
consider the embedding of G2 into GL8 using N(a) = 1 and proceed with
the remaining steps using this convention.

Let T be a maximal F -split torus of G. Let B be a Borel subgroup of
G containing T and let N be the unipotent radical of B. Then B = TN
is a Levi decomposition of B. A parabolic subgroup P of G is standard if
it contains the fixed Borel subgroup B. The standard Levi factor M of a
standard parabolic P is the unique Levi factor that contains the torus T .
Let W be the Weyl group of G defined with respect to T .

Recall that G2 is simply connected (see [18, Ch. 24] for instance). With
this fact, one can adjust the results used in the proof of [14, Lemma 3.2(i)]
to see that all elements of order 2 in G are conjugate in G. Moreover, the
centralizer of an order-two element in G is isomorphic to H. The two key
modifications are to use (1) the fact that the centralizer of a (finite order)
semisimple element in a connected group is connected (this is a theorem of
Springer and Steinberg, see [13, Theorem 2.11]), and (2) all maximal F -split
F -tori in a smooth connected group are conjugate over the F -points of the
group (this is a theorem of Borel and Tits, see [6, Theorem C.2.3]).

Let θ = Int(t0), where t0 ∈ T is an order two element (for instance, we
can take t0 = γ(1,−1), using the notation of Appendix A). Since, t20 = e,
the inner automorphism θ is an involution. Observe that since t0 ∈ T , the
torus T and Borel subgroup B are θ-stable. The group Gθ of F -points of
the θ-fixed points in G is the centralizer of t0 in G, and so Gθ ∼= H.

Remark 5.3. Note that T is θ-stable. It follows that θ induces an involution
on the Weyl group W which we also denote by θ.

As above, let X = {g ∈ G : gθ(g) = e}. Recall that the set X carries a
G-action given by

(g, x) 7→ g · x = gxθ(g)−1

for all g ∈ G and x ∈ X. Of course, eθ(e) = e, so the identity element of G
lies in X. The stabilizer of e ∈ X under the G-action is the subgroup Gθ of
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θ-fixed points. The map G→ X given by g 7→ g · e defines an embedding of
the symmetric space G/H in X as the G-orbit of the identity.

Lemma 5.4. The set X is a disjoint union of two G-orbits, namely G · e and
the singleton set {t0}.

Proof. By definition,

X = {g ∈ G : gθ(g) = e} = {g ∈ G : gt0g = t0}.

The G-orbit of the identity element is

G · e = {g · e : g ∈ G} = {gt0g−1t0
−1 : g ∈ G}.

In particular, for all g ∈ G, g · e = gt0g
−1t0

−1 ∈ X. On the other hand,
t0 ∈ X but t0 is not in G · e. Indeed, since t0

2 = e we have t0t0t0 = t0e = t0
so t0 ∈ X. Now argue by contradiction and suppose that t0 = g · e for some
g ∈ G. It follows that

e = t0
2 = (g · e)t0 = gt0g

−1t0
−1t0 = gt0g

−1,

and t0 = g−1eg = e which contradicts that t0 6= e is an order two element
of T . Thus, G · e∩ {t0} = ∅. Moreover, {t0} is a G-orbit in X because t0 is
fixed under the G action on X. Indeed, for any g ∈ G

g · t0 = gt0θ(g)−1 = gt0t0g
−1t0

−1 = geg−1t0
−1 = t0

−1 = t0.

Finally, we show that X is the union of G · e and {t0}. Suppose that x ∈ X.
Then xt0x = t0. Thus

(xt0)2 = xt0xt0 = t0
2 = e.

Therefore, xt0 is either the identity or an order two element of G. If xt0 = e,
then x = t−1

0 = t0 ∈ {t0}. Otherwise, xt0 has order two and by [14, Lemma
3.2(i)] (and the remarks above) xt0 is G-conjugate to t0. In the latter case,
there exists g ∈ G so that g−1xt0g = t0, that is, x = gt0g

−1t0
−1 = g · e.

Therefore, x ∈ {t0} or x ∈ G · e and X = G · e∪ {t0} is a union of (disjoint)
G-orbits. �

5.1. Roots and Weyl groups. Let ∆ = {α, β} be a basis of the root system
Φ of G with respect to T where α is the short root and β is the long root.
The set of positive roots of G2 is

Φ+ = {α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}.

Let us recall that that we denote W = NG(T )/T the Weyl group of
G2. More generally, for a standard Levi subgroup M of G2, we denote
WM = NM (T )/T the Weyl group of M with respect to T .

The Weyl group of G2 is generated by the simple reflections wα and wβ
attached to the roots α and β. In particular, W is a finite group of size 12
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and we can realize W as follows:

W = {e, wα, wβ, wαwβ, wβwα, wβwαwβ, wαwβwα, wβwαwβwα, wαwβwαwβ,
wαwβwαwβwα, wβwαwβwαwβ, wαwβwαwβwαwβ}.

We summarize the action of the simple reflections wα and wβ on Φ+ in
Figure 5.1.

Figure 5.1. Action of wα and wβ on Φ+

Φ+ α β α+ β 2α+ β 3α+ β 3α+ 2β
wα · Φ+ −α 3α+ β 2α+ β α+ β β 3α+ 2β
wβ · Φ+ α+ β −β α 2α+ β 3α+ 2β 3α+ β

For each root γ ∈ Φ, let Uγ be the associated root subgroup in G2 and fix

an isomorphism xγ : F → Uγ . For g1, g2 ∈ G2, let [g1, g2] = g−1
1 g−1

2 g1g2. For
all x, y ∈ F , we have the following commutator relations (see, for instance,
[25, pp. 443]),

[xα(x), xβ(y)] = xα+β(−xy)x2α+β(−x2y)x3α+β(x3y)x3α+2β(−2x3y2)

[xα(x), xα+β(y)] = x2α+β(−2xy)x3α+β(3x2y)x3α+2β(3xy2)

[xα(x), x2α+β(y)] = x3α+β(3xy)

[xβ(x), x3α+β(y)] = x3α+2β(xy)

[xα+β(x), x2α+β(y)] = x3α+2β(3xy).

For all remaining pairs of positive roots γ1, γ2, we have [xγ1(x), xγ2(y)] = e.
We may realize the group H ∼= SO4(F ) as the subgroup generated by

T and the images of xβ, x2α+β (since SO4 is chosen to be generated by β
and 2α + β -see, for instance, [1] in [9, pp. 137]), its Weyl group must be
generated by wβ and w2α+β. Then the Weyl group of H with respect to T
is

WSO4 = {1, wβ, w2α+β, wβw2α+β} .
Let BSO4 be the standard Borel of H with respect to the positive roots β
and 2α+ β, then the set B/BSO4 has representatives

{xα, xα+β, x3α+β, x3α+2β}.
For ri ∈ F, i = 1, 2, 3, 4, write:

[r1, r2, r3, r4] = xα(r1)xα+β(r2)x3α+β(r3)x3α+2β(r4)

6. Computation of the double cosets representatives

The set B\X of B-orbits in X is finite [11, Proposition 6.15]; therefore,
B\G/H is finite [11, Corollary 6.16]. In particular, for any standard para-
bolic subgroup of a (p-adic) reductive group G, the set P\G/H is a finite
set.
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Let Pα = MαNα (respectively Pβ = MβNβ) be the standard parabolic
subgroup of G with Levi factor Mα and unipotent radical Nα such that
Im(xα) ⊆ Mα (respectively Im(xβ) ⊆ Mβ). Then Nα is generated by the
images of {xβ, xα+β, x2α+β, x3α+β, x3α+2β} (respectively Nβ is generated by
the images of {xα, xα+β, x2α+β, x3α+β, x3α+2β}). We follow a method im-
plemented by Ginzburg in [10] to compute the double cosets representatives
for the two maximal parabolic subgroups Pβ and Pα.

Lemma 6.1. Let w0 denote the element wαwβwαwβwα, and let
r3 ∈ F×/F×2. The set of representatives of Pβ\G2/SO4 is:

{e, wα, wαxα(1), wαwβwαx3α+β(1), wαwβwαxα(1), wαwβwαx3α+β(1)xα(1),

w0xα+β(1), w0x3α+2β(1), w0xα+β(1)x3α+2β(1), w0xα+β(1)x3α+β(r3)}

Proof. The set of representatives for Pβ\G2/B is

A = {e, wα, wαwβ, wαwβwα, wαwβwαwβ, w0 = wαwβwαwβwα}

Notice that we have used that the last element in WG2 has order two hence
is equal to the other order two element whose action is the same on all roots
: wαwβwαwβwαwβ = wβwαwβwαwβwα. The set B/BSO4 is

{xα(r1), xα+β(r2), x3α+β(r3), x3α+2β(r4)}

A complete set of representatives of Pβ\G2/BSO4 is given by:

S := {w[r1, r2, r3, r4], w ∈ A, ri ∈ F}

In the subsequent step, we will use two tricks to find equivalences between
different elements of S:

• We will rescale the unipotent element from ri to 1 using a torus
element. If r1 6= 0, we can find a torus element t such that xα(r1) =
txα(1)t−1; since wαtw

−1
α in Pβ and t in SO4 , we get wαxα(r1) ∼

wαxα(1). Notice that there also exists a torus element which rescales
a product of two root subgroups.
• We use the commutator relations given in the previous subsection,

along with the expressions given in the Table 5.1 to simplify the
expressions for each w ∈ A.

Write x ∼ y if x and y are in the same double coset in Pβ\G2/SO4.

Since xα(r1)xα+β(r2)x3α+β(r3)x3α+2β(r4) belong toNPβ , we have e.[r1, r2, r3, r4] ∼
e, i.e they are in the same double coset in Pβ\G2/SO4. For instance,
consider wαx3α+2β(r4)x3α+β(r3)xα+β(r2)xα(r1), since wαx3α+2βxα+βw

−1
α in

Nβ, wαx3α+β ∈Mβ, what remains is wαxα. The same logic applies to reduce
wαwβx3α+2β(r4)x3α+β(r3)xα+β(r2)xα(r1) to wαwβxα+βxα. Since x3α+β(1)
and xα+β(1) commute, we obtain wαwβwαx3α+β(1)xα(1) and we also have
wαwβwαwβx3α+2β(1)xα+β(1). The last representative w0[r1, r2, r3, r4] will
be dealt with in the last part of this proof.
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(6.1)
{e, wα, wαxα(1);wαwβ, wαwβxα+β(1)xα(1), wαwβxα+β(1), wαwβxα(1);

wαwβwα, wαwβwαx3α+β(1)xα(1);wαwβwαx3α+β(1);wαwβwαxα(1);

wαwβwαwβ, wαwβwαwβx3α+2β(1)xα+β(1), wαwβwαwβx3α+2β(1), wαwβwαwβxα+β(1),

w0xα+β(1), w0x3α+2β(1), w0xα+β(1)x3α+2β(1), w0[0, 1, r3, 0]}
The second step in this procedure is to look at these elements, as compared

to the set WSO4 and try to simplify further:

wαwβ ∼ wα
wαwβxα+β(1)xα(1) ∼ wαxα(1)wβxα(1) ∼ wαxα(1)xα+β(1)wβ ∼ wαxα(1)xα+β(1)

wαwβxα+β(1) ∼ wαxα(1)wβ ∼ wαxα(1);wαwβxα(1) ∼ wαxα+β(1)wβ ∼ wαxα+β(1)

wαwβwαwβ ∼ wαwβwα

(6.2) wαwβwαwβx3α+2β(1)xα+β(1) ∼ wαwβwαx3α+β(1)xα(1);

wαwβwαwβx3α+2β(1) ∼ wαwβwαx3α+β(1);wαwβwαwβxα+β(1) ∼ wαwβwαxa(1)

wαwβwαwβwαwβ ∼ wαwβwαwβwα = w0 ∈WSO4

wαxα(1)xα+β(1) ∼ wαxα+β(1)xα(1)x2α+β(1)x3α+β(1)x3α+2β(1)
∼ wαxα(1)x3α+β(1)x3α+2β(1)x2α+β(1) since x2α+β(1) is in SO4 it disap-
pears. We are left with wαx3α+β(1)x3α+2β(1)xα(1), and therefore∼= wαxα(1).
wαwβwα ∼ wβw2

αwβwαwβwα ∼ wβwαw0 ∼ wβwα since w0 is in WSO4 .

Consider, finally, the representative w0[r1, r2, r3, r4]. This one cannot be
simplified using the tricks described above. However, one notices the SO4

contains a copy of GL2 (constituted of the x±β and the torus) which com-
mutes with w0. Looking at this representative in the quotient by SO4 gives
an action of GL2 on xα(r1)xα+β(r2) which is the standard action of GL2 on
a two-dimensional vector space. Under this action, there are two orbits, one
with r1 = r2 = 0 and the second where (r1, r2) 6= (0, 0). The first orbit yields
the representative w0[0, 0, r3, r4] which, by an action of the same GL2 on the
two-dimensional vector space generated by x3α+β(r3)x3α+2β(r4) yields two
representatives w0, and w0[0, 0, 0, 1].

For the second orbit, (r1, r2) 6= (0, 0), we may assume without loss of
generality, that (r1, r2) = (0, 1), then we are reduced to w0[0, 1, r3, r4]. Now,
either r3 = r4 = 0, which yields the representative w0[0, 1, 0, 0]; or r3 = 0
and r4 6= 0, in which case, you can choose a torus element in SO4 which
acts linearly on x2α+3β(r4) and commutes with xα+β(r2) so we can reduce
further the expression to w0[0, 1, 0, 1].
Finally, if r3 6= 0, one first conjugates by a suitable element of the form xβ(m)
the expression w0[0, 1, r3, r4] to obtain w0[0, 1, r3, 0] (this is easily checked
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in SageMath, one should obtain m = −r3/r4) , and further there exists an
element of the torus t1 such that x3α+β(r3)xα+β(1) = t1x3α+β(1)xα+β(1)t−1

1

(more specifically this torus satisfies s = 1, t2 = r3).

Then, observe that the torus which commutes with xα+β(1) (i.e, you can
check that too, it requires s = t) acts by a square on x3α+β(r3). Therefore
this representative becomes w0[0, 1, r3, 0] where r3 ∈ F×/F×2. To show that
there a finite number of such representatives, one just needs to recall that
when F is a local field, F×/F×2 is finite. More specifically, let us denote
π a prime in F a local field, U = O×F and U1 = {1 + xπn|x ∈ OF }, and
let us take u an element of U with the property that its image in U/U1

is not a square. If 2 - q then {1, u, π, πu} form a complete set of cosets
representatives for F×/F×2. �

Remark 6.2. The reader may have noticed that this set is pretty large (ten
representatives!) whereas we would expect its dimension to be really smaller.
The reference [10] also uses further simplifications by allowing root sub-
groups of negative roots (other than x−α or x−β) to appear in the sim-
plifications. The reason why we have not allowed those root subgroups of
negative roots to appear is due to our embedding in GL8 and the fact that
we would therefore need explicit embeddings of those root subgroups in GL8

to proceed with further computations in SageMath. But the results of the
Appendix do not tell us how to express them in GL8.

Lemma 6.3. Let w0 and w1 denote the elements wαwβwαwβwα and wβwαwβwα
respectively, and let r3 ∈ F×/F×2. The set of representatives of Pα\G2/SO4

is:

{e, wβwα, wβwβxα(1), wβwαx3α+β(1),

wβwαxα(1)x3α+β(1), wβwαwβwαxα(1), wβwαwβwαxα(1)x3α+2β(1),

wβwαwβwαx3α+2β(1), w0xα+βx3α+β(r3)}
Proof. First, notice that the set Pα\G2/B ∼= Wα\W can be described by
{e, wβ, wβwα, wβwαwβ, wβwαwβwα, wβwαwβwαwβ}. We apply the same strat-
egy than in Lemma 6.1. Then, we start with the identity element in Wα\W
and simplify the expression of the representative in Pα\G2/SO4:

exα(r1)xα+β(r2)x3α+β(r3)x3α+2β(r4) ∼ e
since xα(r1) belongs to Mα and xα+β(r2)x3α+β(r3)x3α+2β(r4) belongs to
NPα .

Secondly, we take the next element in Wα\W , and let it acts on each of the
root subgroup of [r1, r2, r3, r4], the result lies in Pα. So wβ[r1, r2, r3, r4] ∼ wβ.

Other simplifications include: wβwα[r1, r2, r3, r4] ∼ wβwα[r1, r3, r4, r2] ∼
wβwα[r3, r4, r1, r2] ∼ wβwαxα(r1)x3α+β(r3) ∼ wβwαxα(1)x3α+β(1) since
wβwαx3α+2β(r4) lands in Pα, and wβwαxα+β(r2) = x2α+β(r2) ∈WSO4 .

Then comes wβwαwβ[r1, r2, r3, r4] which is equivalent to wβwαwβxα+β(r2)x3α+2β(r4).
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The expression wβwαwβwα[r1, r2, r3, r4] does not simplify, but we can mul-
tiply on the left by wα and get wαwβwαwβwα[r1, r2, r4, r3], which appears
already in Lemma 6.1. Finally, the element wβwαwβwαwβ[r1, r2, r3, r4] ∼
wβwαwβwα[r2, r1, r4, r3], letting wβ acts on each root subgroup and us-
ing wβ ∈ WSO4 . Further, since wα ∈ Pα, we can again multiply on the
left by wα and get again the expression already studied in Lemma 6.1:
wαwβwαwβwα[r2, r1, r4, r3]. Using the same argumentation (to deal with
this more challenging representative) as in the proof of this Lemma, this
element yields the representatives:

wβwαwβwαx3α+2β(r4) ∼ wβwαwβwαx3α+2β(1)

wβwαwβwαxα(r2) ∼ wβwαwβwαxα(1)

wβwαwβwαxα(r2)x3α+2β(r4) ∼ wβwαwβwαxα(1)x3α+2β(1)

w0xα+βx3α+β(r3) with r3 ∈ F×/F×
2

As a last step, we will simplify by what could lands in WSO4 on the right.
For instance:

wβ ∈WSO4 , wβ ∼ e
wβwαwβ ∼ wβwα

wβwαwβxα+β(1) ∼ wβwαxα(1)wβ ∼ wβwαxα(1)

wβwαwβx3α+2β(1) ∼ wβwαx3α+β(1)wβ ∼ wβwαx3α+β(1)

wβwαwβxα+β(1)x3α+2β(1) ∼ wβwαwβxα+β(1)w−1
β wβx3α+2β(1)w−1

β wβ ∼ wβwαxα(1)x3α+β(1)

wβwαwβwαwβ ∼ wβwαwβwα
Since we can multiply by wα ∈ Pα on the left and w0 ∈ WSO4 , we have

w0 = wαwβwαwβwα ∼ e so wβwαwβwα ∼ e.

�

7. Analysis of the orbits

7.1. Conventions for the torus and the Levi subgroups. For the rest of this
paper let us set the following notation GL2 = GL2(F ).

Let t and s be F -variables. There exist two conventions to write the
torus in Mβ in the literature (see for instance [19] and [16]). we are writing

the torus in Mβ, as TGL2 =

(
s 0
0 ts−1

)
, so that β(TGL2) = e1 − e2 =

s2t−1. Therefore, from the Appendix A which defines the embedding of G2

into GL8 (see in particular the Equation A.1), the embedding of the torus(
s 0
0 ts−1

)
(resp.

(
t 0
0 s

)
) of G2 in GL8, is the following:

T = TGL8 = diag(1,
s2

t
,
t

s2
, 1,

t

s
, s,

1

s
,
s

t
)
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resp.

T = TGL8 = diag(1,
t

s
,
s

t
, 1, s, t, t−1, s−1)

Since most of our computations are implemented in SageMath, we need
an explicit computable expression of the Levi M = Mβ (resp. M = Mα).
We use the Bruhat decomposition to consider these Levi subgroups as the
disjoint union of the two Bruhat cells: B.wβ.Uβ and B.e.Uβ (resp. similar
expressions replacing β by α), written in SageMath as: UβTU−βwβ and
TUβU−β. Let b be the F -variable entering in the matrix expression of Uβ
and x be the one used in U−β, then the two cells are:

(7.1)

1 0 0 0 0 0 0 0
0 t

s
0 0 tx

s
0 0 0

0 0 bsx
t

+ s
t

0 0 0 0 − bs
t

0 0 0 1 0 0 0 0
0 bs 0 0 bsx+ s 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 1

t
0

0 0 −x
s

0 0 0 0 1
s





1 0 0 0 0 0 0 0
0 tx

s
0 0 − t

s
0 0 0

0 0 − b
s

0 0 0 0 − bx
s
− s

t

0 0 0 1 0 0 0 0
0 btx

s
+ s 0 0 − bt

s
0 0 0

0 0 0 0 0 t 0 0
0 0 0 0 0 0 1

t
0

0 0 1
s

0 0 0 0 x
s


Let a, b, c, d, T, u, v, w,X be F -variables. The following matrix would

make an instance of Mβ since it can be either of the two cells:

(7.2)



1 0 0 0 0 0 0 0
0 T 0 0 a 0 0 0
0 0 u 0 0 0 0 b
0 0 0 1 0 0 0 0
0 c 0 0 v 0 0 0
0 0 0 0 0 w 0 0
0 0 0 0 0 0 1

w 0
0 0 d 0 0 0 0 x


In the context of Mα, we cannot deduce from the two cells’ expressions

UαTU−αwα and TUαU−α a generic expression of the Levi subgroup as given
in Equation 7.2, so we use each of them separately to check the admissibility,
openness and closeness conditions.

7.2. Involutions. In Section 5, we have shown that our involution was de-
fined to be the conjugation by an order two element which was chosen to be
a torus element of order two. Let us define three such elements by fixing the
variables s and t to be ±1. We will then let θti to denote the corresponding
involution Int(ti) on G2 whose fixed points are SO4:

t0 = T (t = 1, s = −1)

t1 = T (t = −1, s = 1)
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and
t2 = T (t = −1, s = −1)

As our reader may also be taking [20] as a reference, and since we are
dealing with the definition of involution, we show that τ (used in this ref-
erence, p213) is trivial. Recall that the set of minimal semi-standard par-
abolic P0 subgroups of a reductive group G forms a W -torsor. In partic-
ular, since T is θ-stable, there exists a unique Weyl element τ ∈ W such
that θ(P0) = τP0τ

−1. Applying θ to this identity yields also the condition
θ(τ)τ = e.

Proposition 7.1. Let τ be the unique Weyl element τ ∈W such that θ(P0) =
τP0τ

−1. then τ = e for any θti where θti is the involution defined as the
conjugation by the order two element ti.

Proof. This is clear once one notices that the Borel subgroup B = P0 is θ-
stable. See the results of the computation in SageMath, file “tau-p213”. �

7.3. Admissible orbits, closed and open orbits. Recall the definition of x =
ηtjη

−1tj
−1 ∈ X for each double coset representative η, given in Section 5.

To apply the Propositions 3.1 and 3.2, we need the condition x ∈ NG,θ(M)
to hold. Notice that when we choose θt0 , this condition is just Mx = M .
Further, the conditions of openness or closedness of parabolic orbits is veri-
fiable by looking at θx(P ) and P : either there are equal (closed orbit) either
their intersection is the Levi M . In the code we verify these conditions with
the two Bruhat cells given in 7.1, but also with the expression 7.2. In this
subsection, we write all the exact properties of the orbits that could be ver-
ified using SageMath and the involution given by θtj , i.e by conjugation by
one of the tj for j ∈ {0, 1, 2}.

Proposition 7.2. Let us denote w0 the element wαwβwαwβwα. Let M = Mβ,
and the involution be given θtj , i.e by conjugation by one of the tj for j ∈
{0, 1, 2}. The elements xη = ηtjη

−1tj
−1 corresponding to the following orbit

representatives are M -strictly admissible:

• Fixing the involution to be θt0: e;wα;wαxα(1);wαwβwαxα(1);w0x3α+2β(1)
• Fixing the involution to be θt1: e;wα
• Fixing the involution to be θt2: e;wα;wαwβwαx3α+β(1);
w0xα+β(1);w0xα+β(1)x3α+β(r3)

In particular, the x corresponding to the open orbit with representative w0xα+β(1)x3α+β(r3)
is M -admissible when choosing the involution to be θt2.

Proof. This fact is easily verified with SageMath (see the file ”admi-conditions-
Pb”). We can compare the matrices M and θx(M) for each x, or notice (us-
ing SageMath) that the x elements listed in the statement of the proposition
are all elements of the maximal torus. Indeed, in each case, they correspond
either to the identity or to one of the three ti, i ∈ {0, 1, 2} except for
the tj which characterizes the involution chosen. Then, we trivially obtain

θx(M) = tktjMt−1
j t−1

k = M . We further notice that, L = M ∩ xMx−1 (see
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page 2 of [20]), hence L = M . Notice finally that the condition x ∈ L.w is
obviously satisfied for them since they are torus elements. �

Proposition 7.3. Let us denote w1 = wβwαwβwα. Let M = Mα, and the
involution be given θtj , i.e by conjugation by one of the tj for j ∈ {0, 1, 2}.
The elements xη = ηtjη

−1tj
−1 corresponding to the following orbit represen-

tatives are M -strictly admissible:

• Fixing the involution to be θt0: e;wβwα
• Fixing the involution to be θt1: e;wβwα;wβwαx3α+β(1);w1xα+β(1)x3α+β(r3)
• Fixing the involution to be θt2: e;wβwα;wβwαxα(1);wβwαwβwαxα(1);
wβwαwβwαx3α+2β(1)

In particular, the x corresponding to the open orbit with representative w1xα+β(1)x3α+β(r3)
is M -admissible when choosing the involution to be θt1.

Proof. This fact is easily verified with SageMath (see the file ”admi-conditions-
Pa”). We can compare the matrices M and θx(M) for each x, or notice (us-
ing SageMath) that the x elements listed in the statement of the proposition
are all elements of the maximal torus. Indeed, in each case, they correspond
either to the identity or to one of the three ti, i ∈ {0, 1, 2} except for
the tj which characterizes the involution chosen. Then, we trivially obtain

θx(M) = tktjMt−1
j t−1

k = M . We further notice that, L = M ∩ xMx−1 (see

page 2 of [20]), hence L = M . Notice finally that the condition x ∈ L.w is
obviously satisfied for them since they are torus elements. �

Proposition 7.4. If P = Pβ, the x elements corresponding to the orbits rep-
resentatives e and wα are closed for any choice of involution among the θtj ,
j ∈ {0, 1, 2}.
If P = Pα, the x elements corresponding to the orbits representatives e and
wβwα are closed for any choice of involution among the θtj , j ∈ {0, 1, 2}.

Proof. As we observed in the proof of Proposition 7.3, the x elements corre-
sponding to the orbits representatives e and wα (resp. wβwα) are torus
elements, it follows trivially that θx(P ) = P . We further deduce that
Ux = U . Finally, Lemma 6.3 of [20]) shows that whenever x ∈ X ∩
NG,θ(M), then Px = MxoUx. Obviously then, the modular character δPx
is just δPβ (resp. δPα). �

Proposition 7.5. Let us denote w0 the element wαwβwαwβwα. The stabilizer
of the representative w0[0, 1, r3, 0] in SO4 is isomorphic to one its subgroup
SO2 and is therefore of minimal dimension. Therefore Pβw0[0, 1, r3, 0]SO4

(resp. Pαw1[0, 1, r3, 0]SO4) is open in G2, and Ow0[0,1,r3,0] (resp. Ow1[0,1,r3,0])
is an open orbit. The different SO2 in SO4 are parametrized by the square
classes F×/(F×)2 and each gives rise to a given open orbit.

Proof. There exists a torus element te(s, ts
−1) in Tβ with t = s which satis-

fies the following equation: texα+β(1)x3α+β(r3)t−1
e = xα+β(1)x3α+β(1) and

w0texα+β(1)x3α+β(r3)t−1
e = w0tew

−1
0 w0xα+β(1)x3α+β(r3)t−1

e with w0tew
−1
0
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denoted t′ (which is some element in the torus only depending on the vari-
able t) of the torus Tβ and since we look at w0xα+β(1)x3α+β(r3) in a dou-
ble coset, multiplying on the left by t−1

e and on the right by t′−1 is harm-
less, so w0texα+β(1)x3α+β(r3)t−1

e ∼ t′t−1
e w0xα+β(1)x3α+β(r3)tet

′−1 but also
∼ w0xα+β(1)x3α+β(1).
So we have found an element in the torus which stabilizes the orbit w0[0, 1, r3, 0]
and depends on only one variable (i.e is of dimension one). Further, we no-
tice that te acts as square x3α+β(r3). The square class r3t

2 is the quadratic
form e→ r3N(e), with e ∈ E, with r3 not a square, attached to E the qua-
dratic extension of F . We let V = E+(−E), where (−E) is the same vector
space with the negative quadratic form, be the split ambient non-degenerate
4-dimensional quadratic space and W a two-dimensional quadratic subspace
of V such that SO(E) ∼= SO(W ) ⊂ SO(V ) ∼= SO4. Therefore, they are as
many SO(W ) as they are quadratic extensions of F (see also the end of
the proof of Lemma 6.1). Each being the stabilizer of minimal dimension
(dimension 1) of w0[0, 1, r3, 0] , each gives rise to an open orbit. �

8. SO4-distinguished induced representations of G2

As we are approaching our final results, one question remains untouched:
The question of which characters χ of SO4(F ) are we using when we apply
the Proposition 3.1, and how can they be seen, at first, as characters of the
Levi Mβ isomorphic to GL2.

8.1. Characters of SO4 and characters of GL2. Let us recall here how GL2 =
GL2(F ) sits inside SO4. GL2 × GL2 operates on X = M2(F ) by left and
right regular representations, preserving determinant (a quadratic form on
the 4-dimensional space X) up to scalars:

(g, h)X = gXh−1

It is known that the split form of SO4 is isomorphic to SL2,s × SL2,l/∆ <
±1 >, hence there are a few options for the characters of GL2 to be related
to those of SO4.

Lemma 8.1. We assume the characteristic of F is different from 2. The
characters of SO4(F ) are the characters of F×/F×2, i.e are quadratic char-
acters of F×.

Proof. The characters of SO4 come from the spinor norm as discussed by
Serre in [26], 3.2 b). Let q be a nondegenerate quadratic form of rank n.
There exists a cohomology exact sequence

Spinq(F )→ SOq(F )→ F×/F×2 → H1(F,Spinq)→ H1(F,SOq)→ Br2(F )

We have H1(F,Spinq) = 0 by a result of Kneser [15] (see also [26] 3.1)
and using the fact that Spinq is simply connected. Therefore, we have the

sequence Spinq(F ) → SOq(F ) → F×/F×2 → 0. Since Spinq(F ) is its own
commutator, it has no non-trivial characters, and therefore any complex
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character of SOq(F ) must be trivial on Spinq(F ). Finally, by the sequence
above, it means any complex character of SOq(F ) can be identified with a
character of F×/F×2 (a set of cardinality 4 by the arguments recalled at
the end of Lemma 6.1), i.e with a quadratic character of F×. �

Theorem 8.2 (Closed orbit). Let χ be a character of SO4(F ). It is a quadratic
character of F×. It can be seen as a character of GL2 (those are given
by χ ◦ det for a quasi-character χ of F×). Let Pβ (resp. Pα) denote the
maximal parabolic corresponding to the root β (resp. α). The parabolic
induced representations of G2 which are (SO4, χ)-distinguished include the
following representations:

• The induction from Pβ to G2 of the reducible principal series I(χδ
1/2
Pβ
|.|−1/2⊗

|.|) of GL2.

• The induction from Pα to G2 of the reducible principal series I(χδ
1/2
Pα
|.|1/2⊗

χδ
1/2
Pα
|.|−1/2)of GL2.

• The induced representation IG2
Pβ

((χ ◦ det)δ
1/2
Pβ

)

• The induced representation IG2
Pα

((χ ◦ det)δ
1/2
Pα

).

Proof. Let us first remark that the description of the characters of SO4 re-
sults from Lemma 8.1. Secondly, we have identified two closed parabolic
orbits among the thirteen (resp. twelve) orbits: the one associated to the
element x = e (which is, by definition, closed), and another, see Proposition
7.4.

Applying Proposition 3.1 we know that if σ is (Mx, δPxδ
−1/2
P χη

−1
)-distinguished

then IndGP (σ) is (H,χ)-distinguished. Since L = M ∩ ηθ(η−1Mη)η−1 = M ,
Mx = Lx = M ∼= GL2 in this case. Notice, also from Proposition 7.4, that
δQx = δPβ (resp. δQx = δPα). We are therefore looking at inducing GL2-

representations (denoted σ in the Proposition 3.1) which are (GL2, δ
1/2
Pβ
χ)-

distinguished (resp. (GL2, δ
1/2
Pα
χ)-distinguished). We then use Proposition

4.1 and the following Remark 4.2. �

Theorem 8.3 (Open orbit). Let Pβ (resp. Pα) denote the maximal parabolic
corresponding to the root β (resp. α). Let us define the involution θ whose
fixed points are SO4 to be either θt2 if the inducing parabolic is Pβ or θt1 if
the inducing parabolic is Pα. Then the induced representations of G2 which
are SO4-distinguished include the following representations:

• The induction from Pβ to G2 of the reducible principal series

I(|.|−1/2 ⊗ |.|) of GL2.
• The induction from Pα to G2 of the reducible principal series
I(|.|1/2 ⊗ |.|−1/2) of GL2.

• The induced representation IG2
Pβ

(1) for the trivial character 1

• The induced representation IG2
Pα

(1) for the trivial character 1.
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Proof. In Propositions 7.2 and 7.3, we noticed that, when taking the in-
volution specified in the statement above, the element x corresponding to
w0[0, 1, r3, 0] was Mβ-admissible (resp. Mα-admissible). Thus, the condi-
tions to apply Proposition 3.2 are satisfied, and we combine it with Propo-
sition 4.1 and the following Remark 4.2. �

Theorem 8.4 (Distinguished induced parabolic representations and admissi-
ble orbits). We take the involution θ defining SO4(F ) = Gθ

2(F ) to be of the
form θti for i ∈ {0, 1, 2}, as well as the expressions of the Levi subgroups
as defined in the Subsection 7.1. The parabolically induced representations
from the parabolic subgroups Pβ or Pα of G2 distinguished by SO4 whose
linear forms arise from admissible, open or closed, orbits are necessarily of
the form given in the Theorems 8.2 and 8.3.

Proof. We apply the Proposition 3.1 and refer to Proposition 7.2 in [20] for
the open orbit. Notice that the condition x ∈ NG,θ(M) is equivalent to the
condition of strict-admissibility as defined in the Definition 3.5.
First, we have shown that following this definition, the only strictly-admissible
elements are the one given in the Propositions 7.3 and 7.2. Thus, to apply
the Proposition 3.1 and , the following condition is necessarily satisfied:
θx(M) = M and Mx = M ∼= GL2. In other words, the case where Mx = T
does not occur. The case where the orbit is closed, and M ∼= GL2 was
treated in the Theorem 8.2. �

Appendix A. Conventions for G2 used for SageMath
computations

The appendix contains the necessary background information that allows
one to embed the exceptional group G2 into the general linear group GL(8).
Realizing G2 as the automorphism group of an eight-dimensional Cayley
algebra C, and then computing the matrices of elements in root groups with
respect to a chosen basis for C is enough to produce the embedding. Such an
embedding was used extensively to carry out the calculations in SageMath
that are used throughout the present paper. The material in this appendix
has been graciously provided by Steven Spallone who in turn would like
to acknowledge Gordan Savin for getting him started. Any errors in what
follows are the responsibility of the author.

Preliminaries on the Cayley algebra. First, we describe the split Cayley
algebra C over F . Let M2(F ) be the algebra of 2 × 2 matrices with entries
in F . As an F -vector space, C = M2(F ) ⊕M2(F ) and a typical element of
C can be written as a pair c = (x | y), where x, y ∈ M2(F ) (see 1.5 in [27],
for instance). Multiplication on C is given by

(x | y)(x′ | y′) = (xx′ + adj(y′)y | y′x+ y adj(x′)),

for all (x | y), (x′ | y′) ∈ C. Here adj(x) is the usual adjugate matrix, which
agrees with (detx) ·x−1 when x ∈ M2(F ) is invertible. The algebra C has an
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identity e = (I2 | 0), where I2 is the 2× 2 identity matrix, and the subspace
spanned by e is the centre of C.

There is a conjugation map on C given by

(x | y) = (adj(x) | −y),

and a norm map N : C → F given by

N((x | y)) = detx− det y.

For any c ∈ C, the trace of c is defined to be c+ c. If c = (x | y), then

c+ c = tr (x)e,

which we identify with the usual trace tr (x) ∈ F of x. Thus, we abuse
notation and write tr : C → F for the map c 7→ c + c. The bilinear form
determined by N , namely the pairing defined for c, d ∈ C by

〈c, d〉 = N(c+ d)−N(c)−N(d)

is non-degenerate. Observe that 〈c, d〉 = tr (cd) for all c, d ∈ C; in particular,
〈c, e〉 = tr (c), for all c ∈ C.

The Automorphism Group of C. Let G be the group of automorphisms of
the algebra C. It is now well known that G is a split semisimple algebraic
group of type G2 (this was first proved by E. Cartan [4]). By [27], the

elements of G stabilizing A2 =

(
∗ ∗ 0 0
∗ ∗ 0 0

)
are of the form ϕc,p, where

ϕc,p(x | y) = (cxc−1 | pcyc−1),

with c ∈ GL2(F ) and p ∈ SL2(F ).
Let λ1, λ2 ∈ F×. Let aλ1,λ2 ∈ GL2(F ) be the diagonal matrix

aλ1,λ2 =

(
λ1 0
0 λ2

)
.

Then define the element γ(λ1, λ2) ∈ G via

(A.1) γ(λ1, λ2)(x | y) =
(

Int(aλ1,λ2)(x) | aλ2,λ2−1 Int(aλ1,λ2)(y)
)
,

for all (x | y) ∈ C. Recall that Int(g)(x) = gxg−1, for any g ∈ GL2(F ) and
x ∈ M2(F ).

Let T = {γ(λ1, λ2) : λ1, λ2 ∈ F×}; then T is a maximal torus of G. Let
γ = γ(λ1, λ2) ∈ T . Define α(γ) = λ1λ2

−1 and β(γ) = λ2
2λ1
−1. Then we

have

(α+ β)(γ) = λ2,

(2α+ β)(γ) = λ1,

(3α+ β)(γ) = λ1
2λ2
−1, and

(3α+ 2β)(γ) = λ1λ2.
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Let s =

(
0 −1
1 0

)
and define wG ∈ G by

wG((x | y)) = (sxs−1 | sys−1).

Then conjugation by wG acts by inversion on T , and thus represents the
longest Weyl group element of T in G.

Lie algebra g. The Lie algebra g of G can be identified with the algebra of
derivations of C. Recall that a derivation of C is a linear map D : C → C so
that

D(cd) = D(c)d+ cD(d),

for all c, d ∈ C.
The adjoint action of G on g is given by (Ad(g)D)(c) = g(D(g−1c)), for

all derivations D ∈ g and c ∈ C. Let t denote the Lie algebra of the torus T .
Let λ1, λ2 ∈ F and let γ(λ1, λ2) ∈ t. Let

t = aλ1,λ2 =

(
λ1 0
0 λ2

)
.

It is easy to see that for an element (x | y) ∈ C we have

γ(λ1,λ2)(x | y) = ([t, x], tr (t)y − yt).

One-parameter root subgroups of G2.

Root subgroup and other objects related to α. For any t ∈ F , define uα(t), u−α(t) ∈
G by

uα(t)(x | y) = (Int(V (t))x | yV (−t))
and

u−α(t)(x | y) = (Int(V (t))x | yV (−t)),
for all (x | y) ∈ C, where

V (t) =

(
1 t
0 1

)
and V (t) =

(
1 0
t 1

)
.

Explicitly,

uα(t)

(
x1 x2 y1 y2

x3 x4 y3 y4

)
=

(
x1 + tx3 x2 + t(x4 − x1)− t2x3 y1 y2 − ty1

x3 x4 − tx3 y3 y4 − ty3

)
Let nα be a representative of the reflection in WG2 corresponding to the
root α. Following Chevalley’s recipe (see [12, §32.3], for instance), one easily
computes that nα = uα(1)u−α(−1)uα(1) is given by

nα(x | y) = (sxs−1 | ys)

where s =

(
0 −1
1 0

)
, as above. Note that n2

α = γ(−1,−1), and that

nαγ(λ1, λ2)n−1
α = γ(λ2, λ1).
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A.0.1. Root subgroup and other objects related to β. If a, b ∈ C, define the
map La,b : C → C by

La,b(c) = 〈c, a〉b− 〈c, b〉a,

for all c ∈ C. Take

x0 =

(
0 0 0 0
1 0 0 0

)
, w0 =

(
0 0 1 0
0 0 0 0

)
,

and define Dβ = Lw0,x0 . Put

x′0 =

(
0 −1 0 0
0 0 0 0

)
, w′0 =

(
0 0 0 0
0 0 0 1

)
,

and define D−β = Lw′0,x′0 . It is straightforward to check that Dβ and Dβ are
the root vectors for the roots β and −β in the Lie algebra g of G.

Then for t ∈ F and c ∈ C, define

uβ(t)(c) = c+ Lw0,x0(tc).

and

u−β(t)(c) = c+ Lw′0,x′0(tc).

Explicitly,

uβ(t)

(
x1 x2 y1 y2

x3 x4 y3 y4

)
=

(
x1 x2 y1 + tx2 y2

x3 − ty4 x4 y3 y4

)
and

u−β(t)

(
x1 x2 y1 y2

x3 x4 y3 y4

)
=

(
x1 x2 + ty1 y1 y2

x3 x4 y3 y4 − tx3

)
.

Let nβ denote the representative of the reflection corresponding to β in
WG2 . Following Chevalley’s recipe, as above, if we set nβ = uβ(1)u−β(−1)uβ(1),
then

nβ(c) = c+ 〈c, w − x′〉x+ 〈c, w′ − x〉w − 〈c, w′ + x〉x′ + 〈c, w + x′〉w′.

Explicitly

nβ

(
x1 x2 y1 y2

x3 x4 y3 y4

)
=

(
x1 −y1 x2 y2

−y4 x4 y3 x3

)
.

Note that n2
β = γ(1,−1), and that

nβγ(λ1, λ2)n−1
β = γ(λ1, λ1λ

−1
2 ).
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A.0.2. More root subgroups. The formula Int(nα)u3α+β(t) = uβ(t) gives

u3α+β(t)

(
x1 x2 y1 y2

x3 x4 y3 y4

)
=

(
x1 x2 − ty3 y1 y2 − tx3

x3 x4 y3 y4

)
.

The formula Int(nβ)uα+β(t) = uα(−t) gives

uα+β(t)

(
x1 x2 y1 y2

x3 x4 y3 y4

)
=

(
x1 + ty4 x2 y1 + t(x4 − x1)− t2y4 y2 + tx2

x3 + ty3 x4 − ty4 y3 y4

)
.

The formula Int(nα)u2α+β(t) = uα+β(−t) (see for instance [12][3.35] gives

u2α+β(t)

(
x1 x2 y1 y2

x3 x4 y3 y4

)
=

(
x1 − ty3 x2 + ty4 y1 − tx3 y2 + t(x4 − x1) + t2y3

x3 x4 + ty3 y3 y4

)
.

The formula Int(nβ)u3α+2β(t) = u3α+β(−t) gives

u3α+2β(t)

(
x1 x2 y1 y2

x3 x4 y3 y4

)
=

(
x1 x2 y1 − ty3 y2 − ty4

x3 x4 y3 y4

)
.

A.1. Embedding G2 into GL(8). The algebra C is eight-dimensional and has
ordered basis B = {e11, e21, e31, e41, e12, e22, e32, e42} where

e11 =

(
1 0 0 0
0 0 0 0

)
e12 =

(
0 0 1 0
0 0 0 0

)
e21 =

(
0 1 0 0
0 0 0 0

)
e22 =

(
0 0 0 1
0 0 0 0

)
e31 =

(
0 0 0 0
1 0 0 0

)
e32 =

(
0 0 0 0
0 0 1 0

)
e41 =

(
0 0 0 0
0 1 0 0

)
e42 =

(
0 0 0 0
0 0 0 1

)
.

Calculating the matrices of γ(λ1, λ2) ∈ T , and the root groups described
above with respect to the basis B is enough to embed G ∼= G2 into GL(8).

Appendix B. The code

The code is organized in two branches: one “main” branch where all files
needed to justify the results presented in this article are available; the sec-
ond branch, “old strategy” contains the same computations as in the other
branch but using the matching elements rather than the x-elements.

One subsidiary result we verified with Sage was the matching of each orbit
representative η, to a unique element in the double cosets space Wβ\W/
Wβ = {e, wα, wα.wβ.wα, wα.wβ.wα.wβ.wα}, where Wβ denotes WMβ

=<
wβ >.
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B.1. The matching. Following Lemma 3.1 in [20], we know each orbit repre-
sentative η, as given in the previous section, corresponds to a unique element
in the double cosets space

Recall the following map from Subsection 3.1:

ιM : P\X → MWM ′τ
−1 ∩ S0(θ),

where S0(θ) = {w ∈W : wθ(w) = e} is the set of twisted involutions in the
Weyl group, and the definition of τ was recalled in the above subsection.
For an element n ∈ τ , θ′(g) = n−1θ(g)n. Here M ′ is the θ′ = θ conjugate
of M . In our context, first the set of twisted involutions is just the set
of involutions, as our involution consists in the conjugation by an order
two element of the torus, secondly out of the twelve elements in W , seven
are indeed involutions. This is easily verified with SageMath, although our
readers need to pay attention that the product ww−1 might not necessarily
be the identity matrix, but can also be an order two element of the torus.

Fix x ∈ X, and recall x = η.e = ηeθ(η)−1. η, x, match some unique
elements in the double cosets Wβ\W/Wβ: w = ιM (Pẋ). This uniqueness
follows from a statement at the bottom of p216 in [20] and Proposition 7.1.
Offen uses expressions which depend on P ′ and M ′ but since θt1 stabilizes
M , M ′ = M as we have verified this matching using θt1 .

Our first step while dealing with this project was to verify this matching
and to do so we have used the involution given by θt1 (this verification was
not done for θt0 or θt2). Concretely, we are verifying in SageMath (again
the code is available in the github file for the convenience of the reader) the
following equations.

• PxP = PwP
• t1 = w ∗ t1 ∗ w
• w is left and right W(Mβ)-reduced.

Look at the first point above in SageMath: we compare each left side of
the equation to the four elements in Wβ\W/Wβ and eliminate progressively
variables to reach some contradiction for all elements but one which is the
match. The results are given in the bracket below:
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(B.1)

η x = η.θ(η)−1 Wβ\W/Wβ

e e e
wα wα.wα e
wαxα(1) wα.xα(2).wα wα

wαwβwαx3α+β(1) wα ∗ wβ ∗ wα ∗ x3α+β ∗ x3α+β ∗ wα ∗ t1 ∗ w−1
β ∗ t1 ∗ wα wα.wβ .wα

wαwβwαxα(1) wα ∗ wβ ∗ wα ∗ xα ∗ xα ∗ wα ∗ t1 ∗ w−1
β ∗ t1 ∗ wα wα.wβ .wα.wβ .wα

wαwβwαx3α+β(1)xα(1) wα.wβ .wα.wβ .wα

w0xα+β(1) wα

w0x3α+2β(1) wα.wβ .wα

w0xα+β(1)x3α+2β(1) wα.wβ .wα

w0[0, 1, r3, 0] wα.wβ .wα.wβ .wα

w0 w0t1w
−1
0 t1 w0
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